Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán đợt tháng 01 năm 2024 trường THPT Tiên Du 1 Bắc Ninh

Nội dung Đề khảo sát lớp 10 môn Toán đợt tháng 01 năm 2024 trường THPT Tiên Du 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán lớp 10 đợt tháng 01 năm học 2023 – 2024 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 23 tháng 01 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề khảo sát Toán lớp 10 đợt tháng 01 năm 2024 trường THPT Tiên Du 1 – Bắc Ninh : + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (1 sản phẩm mới của công ty) cần thuê xe để chở ít nhất 140 người và ít nhất 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 5 triệu và một chiếc xe loại B cho thuê với giá 4 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng mỗi xe loại A chỉ chở tối đa 20 người và 0,6 tấn hàng. Mỗi xe loại B chở tối đa 10 người và 1,5 tấn hàng. + Một sợi dây có chiều dài 26m được cắt thành hai đoạn để làm thành một hình vuông và một hình tròn. Tính chiều dài (theo đơn vị mét) của đoạn dây làm thành hình vuông được cắt ra sao cho tổng diện tích của hình vuông và diện tích của hình tròn là nhỏ nhất? + Một quả bóng được đá lên từ độ cao 1m theo quỹ đạo là một cung parabol. Tính từ thời điểm quả bóng được đá lên thì tại thời điểm giây thứ nhất nó đạt độ cao 6m và tại thời điểm giây thứ ba nó đạt độ cao 12m. Tính độ cao của quả bóng đạt được tại thời điểm giây thứ năm (làm tròn đến hàng phần trăm)? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình
Đề thi HSG Toán 10 năm 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, học sinh có 180 phút đẻ làm bài, kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2019. Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình : + Trong mặt phẳng toạ độ Oxy. 1. Viết phương trình đường cao AD, phân giác trong CE của tam giác ABC biết A(4;-1), B(1;5), C(-4;-5). 2. Cho B(0;1), C(3;0). Đường phân giác trong góc BAC của tam giác ABC cắt Oy tại M(0;-7/3) và chia tam giác ABC thành hai phần có tỉ số diện tích bằng 10/11 (phần chứa điểm B có diện tích nhỏ hơn diện tích phần chứa điểm C). Gọi A(a;b) và a < 0, tính T = a^2 + b^2. + Chứng minh rằng: a.sinA + b.sinB + c.sinC = 2(ma^2 + mb^2 + mc^2)/3R với mọi tam giác ABC (a = BC, b = AC, c = AB; ma, mb, mc lần lượt là độ dài đường trung tuyến hạ từ A, B, C; R bán kính đường tròn ngoại tiếp tam giác ABC).
Đề thi học sinh giỏi Toán 10 năm 2018 - 2019 trường Đan Phượng - Hà Nội
giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội, kỳ thi được diễn ra nhằm giúp giáo viên bộ môn và nhà trường tuyển chọn những em học sinh khối lớp 10 giỏi môn Toán để bổ sung vào đội tuyển học sinh giỏi Toán 10 của nhà trường, những em được chọn sẽ được tuyên dương, khen thưởng trước toàn trường để làm tấm gương học tập cho các học sinh khác, các em sẽ được tiếp tục bồi dưỡng, rèn luyện để tham gia kỳ thi học sinh giỏi Toán cấp thành phố. Đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội được biên soạn theo hình thức tự luận nhằm đánh giá chính xác khả năng tư duy logic của các em, đề gồm 5 bài toán, thang điểm 20, thời gian làm bài thi môn Toán là 120 phút, đề thi có lời giải chi tiết và thang điểm. [ads] Trích dẫn đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình thang ABCD với hai đáy là AB và CD. Biết diện tích hình thang bằng 14 (đơn vị diện tích), đỉnh A(1;1) và trung điểm cạnh BC là H(-1/2;0). Viết phương trình tổng quát của đường thẳng AB biết đỉnh D có hoành độ dương và D nằm trên đường thẳng d: 5x – y + 1 = 0. + Cho parabol (P): y = 2x^2 + 6x – 1. Tìm giá trị của k để đường thẳng Δ: y = (k + 6)x + 1 cắt parabol (P) tại hai điểm phân biệt M, N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: y = -2x + 3/2. + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho BN = a/3, CM = 2a/3, AP = x (0 < x < a). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Đề thi HSG Toán 10 năm 2018 - 2019 trường Phùng Khắc Khoan - Hà Nội
Nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán để bổ sung vào đội ngũ học sinh giỏi Toán 10 của trường, vừa qua, trường THPT Phùng Khắc Khoan, Thạch Thất, Hà Nội đã tiến hành tổ chức kỳ thi chọn học sinh giỏi cấp trường lớp 10 môn Toán năm học 2018 – 2019. Đề thi HSG Toán 10 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội gồm 1 trang, đề được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài thi là 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội : + Cho hàm số y = x^2 + x – 1 có đồ thị (P). Tìm m để đường thẳng d: y = -2x – m cắt đồ thị (P) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Cho tam giác ABC có AB = c, AC = b và góc BAC bằng 60 độ. Các điểm M, N được xác định bởi MC = -2MB và NA = -1/2.NB. Tìm hệ thức liên hệ giữa b và c để AM và CN vuông góc với nhau. + Cho tam giác ABC có BC = a, CA = b, BA = c và diện tích là S. Biết S = b^2 – (a – c)^2. Tính tanB.