Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Nguyễn Bá Ngọc Thanh Hoá

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Nguyễn Bá Ngọc Thanh Hoá Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 trường THCS Nguyễn Bá Ngọc Thanh Hoá Đề học sinh giỏi Toán lớp 8 trường THCS Nguyễn Bá Ngọc Thanh Hoá Chào mừng đến với đề thi chọn đội tuyển học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022 - 2023 tại trường THCS Nguyễn Bá Ngọc, huyện Quảng Xương, tỉnh Thanh Hoá. Đề thi sẽ bao gồm 01 trang với 05 bài toán dạng tự luận, với thời gian làm bài là 150 phút. Đề thi sẽ có đáp án và lời giải chi tiết giúp các em học sinh hiểu rõ hơn về từng bài toán. Ví dụ về một bài toán trong đề thi: - Tìm đa thức f(x) biết rằng: f(x) chia cho x + 2 dư 10, f(x) chia cho x - 2 dư 22, f(x) chia cho x2 - 4 được thương là -5x và còn dư. - Cho 2 số tự nhiên a, b thỏa mãn: 2a2 + a = 3b2 + b. Chứng minh rằng 2a + 2b + 1 là số chính phương. - Với bài toán về hình vuông ABCD và các đường thẳng đi qua đỉnh A, học sinh sẽ được yêu cầu chứng minh các tính chất của các tam giác và tứ giác được tạo thành. Đề thi học sinh giỏi Toán lớp 8 năm 2022 - 2023 tại trường THCS Nguyễn Bá Ngọc hứa hẹn sẽ là một thách thức đối với các em học sinh, nhưng cũng là cơ hội để họ thể hiện kiến thức và kỹ năng Toán của mình. Chúng ta hãy cùng nhau chinh phục những bài toán đầy thú vị và học hỏi từ những điều mới mẻ trong môn học Toán.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Đa thức f(x) khi chia cho x + 1 dư 1 và chia cho x2 + 2 dư là 2x. Tìm đa thức dư khi f(x) chia cho (x + 1)(x2 + 2). + Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ HE, HF theo thứ tự vuông góc với AB, AC (E thuộc AB, F thuộc AC) 1)Chứng minh: AH2 = AE.AB và tam giác AEF đồng dạng với tam giác ACB. 2) Phân giác của AHB AHC BAC theo thứ tự cắt AB, AC, BC theo thứ tự tại M, N và D. Chứng minh: DM song song với AC và tứ giác AMDN là hình vuông. 3) Trên đoạn HC lấy điểm I sao cho BFH HFI. Chứng minh ba điểm A, I và trung điểm của HF thẳng hàng. + Cho tam giác nhọn ABC, các đường cao AD, BE, CF. Chứng minh rằng nếu SSS AFE FBD DCE thì tam giác ABC là tam giác đều.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Kim Bảng - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Kim Bảng, tỉnh Hà Nam. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Kim Bảng – Hà Nam : + Tìm các số nguyên x, y thỏa mãn: x2 + xy – 2021x − 2022y – 2023 = 0. + Cho hình vuông ABCD, trên cạnh AB lấy điểm M, trên cạnh AD lấy điểm N sao cho AM = AN. Từ A kẻ AH vuông góc với BN (H thuộc BN), AH cắt DC và BC lần lượt tại E, F a) Chứng minh tứ giác AMED là hình chữ nhật. b) Chứng minh: AH2 = HN.HB c) Biết diện tích tam giác BHC gấp 4 lần diện tích tam giác AHM. Chứng minh rằng: AC = 2.MN. + Cho tam giác ABC. Một đường thẳng d không đi qua các đỉnh của tam giác đã cho nhưng cắt các đường thẳng BC, CA, AB theo thứ tự tại M, N, I. Chứng minh: AN CM BI CN BM AI 1.
Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT An Dương - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện An Dương, thành phố Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT An Dương – Hải Phòng : + Giả sử p và q là các số nguyên tố thỏa mãn đẳng thức 2 p p q q. Chứng minh rằng tồn tại số nguyên dương k sao cho 2 p kq q kp. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE AF. Vẽ AH vuông góc với BF (H thuộc BF), đường thẳng AH cắt các đường thẳng DC và BC lần lượt tại hai điểm M và N. 1. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng : AC EF 2. 3. Chứng minh rằng : 2 2 1 AD AM AN. + Một giải bóng chuyền có 9 đội bóng tham gia thi đấu vòng tròn 1 lượt (hai đội bất kỳ chỉ thi đấu với nhau 1 trận). Biết đội thứ nhất thắng 1 a trận và thua 1 b trận, đội thứ 2 thắng 2 a trận và thua 2 b trận, đội thứ 9 thắng 9 a trận và thua 9 b trận. Chứng minh rằng 2 2 2 3 9 a a b b.
Đề khảo sát HSG Toán 8 năm 2022 - 2023 trường THCS Phú Thái - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Phú Thái, huyện Kim Thành, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2022 – 2023 trường THCS Phú Thái – Hải Dương : + Phân tích thành nhân tử: 3 333 a b c abc. Áp dụng tìm x biết: 3 3 2 6 xx 211. Tìm số dư trong phép chia của đa thức: xx 1 2 3 6 2023 cho đa thức 2 x 5 7 x. + Cho a, b, c là các số tự nhiên. Chứng minh rằng A = 4a(a + b)(a + b + c)(a + c) + b2c2 là một số chính phương. (Số chính phương là bình phương của một số tự nhiên). Tìm các số nguyên x và y thỏa mãn 3xy + 2y – 2x + 1 = 0. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại M và N. Chứng minh rằng: 1) AM = BF; 2) Tứ giác AEMD là hình chữ nhật; 3) 2 22 111 AB AM AN.