Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chuyên đề lớp 10 môn Toán lần 3 năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc

Nội dung Đề thi chuyên đề lớp 10 môn Toán lần 3 năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chuyên đề môn Toán lớp 10 lần 3 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi mã đề 101 gồm 06 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian làm bài: 90 phút (không kể thời gian phát đề). Trích dẫn Đề thi chuyên đề Toán lớp 10 lần 3 năm 2022 – 2023 trường THPT Trần Phú – Vĩnh Phúc : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Một người cần phải chèo thuyền từ vị trí A đến vị trí C trên bờ BD, sau chạy bộ từ C đến B. Biết rằng vận tốc chèo thuyền bằng 6km h vận tốc chạy bộ là 8km h khoảng cách từ vị trí A đến bờ BD bằng 3km, khoảng cách hai vị trí B D bằng 8km. Tính khoảng cách lớn nhất giữa hai vị trí B C biết rằng tổng thời gian người đó chèo thuyền và chạy bộ là 1 giờ 20 phút. + LeBron James là một cầu thủ bóng rổ chuyên nghiệp Mỹ và hiện tại đang chơi cho CLB bóng rổ Cleveland Cavaliers của Hiệp hội Bóng rổ Quốc gia (NBA). Trong một cuộc thi bóng rổ để ném bóng vào rổ qua đối thủ, LeBron James đã ném bóng thành công với số liệu đo được như hình vẽ (OA OB m BC m A m OE m 4 5 175 D 3 3). Tính độ cao lớn nhất của bóng so với mặt đất trong khi bóng bay tới rổ biết rằng quỹ đạo bay của bóng là một đường cong parabol. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát chất lượng Toán 10 năm học 2016 - 2017 trường THPT Thạch Thành 1 - Thanh Hóa lần 4
Đề thi khảo sát chất lượng Toán 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.
Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 - 2017 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 – 2017 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 12 câu hỏi trắc nghiệm và 3 bài tập tự luận, có hướng dẫn giải và thang điểm.
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên - Bắc Ninh lần 2
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên – Bắc Ninh lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 - Bắc Ninh
Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 – Bắc Ninh gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140kg hóa chất A và 9kg hóa chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg hóa chất A và 0,6kg hóa chất B. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10kg hóa chất A và 1,5kg hóa chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II? + Tìm độ dài hai cạnh của một tam giác vuông biết rằng: Khi ta tăng mỗi cạnh 1 cm thì diện tích tăng 5,5 cm2; khi ta giảm chiều dài cạnh này 3 cm và cạnh kia 2 cm thì diện tích giảm 9 cm2. Đáp án đúng là? + Tìm khẳng định SAI trong các khẳng định sau: A. Phương sai luôn luôn lớn hơn độ lệch chuẩn B. Phương sai càng lớn thì độ phân tán của các giá trị quanh số trung bình càng lớn C. Phương sai luôn luôn là 1 số dương D. Phương sai là bình phương của độ lệch chuẩn