Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 8 môn Toán năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An

Nội dung Đề thi HSG lớp 8 môn Toán năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2022-2023 trường THCS Cao Xuân Huy Nghệ An Đề thi HSG lớp 8 môn Toán năm 2022-2023 trường THCS Cao Xuân Huy Nghệ An Sau đây là bộ đề thi chọn học sinh giỏi cấp trường môn Toán lớp 8 năm học 2022-2023 của trường THCS Cao Xuân Huy, tỉnh Nghệ An. 1. Cho hình vuông ABCD, trên tia đối của tia BA lấy M, trên tia đối của tia CB lấy N sao cho AM = CN. a) Chứng minh MDN vuông cân b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi K là trung điểm MN. Chứng minh O, C, K thẳng hàng. 2. Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB). Gọi I là trung điểm của AD, trên tia đối của tia BC lấy điểm K sao cho BK = BH. Chứng minh KD vuông góc với HI. 3. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d. Chứng minh a^2 + b^2 + c^2 + d^2 là tổng của ba số chính phương. Đây là những câu hỏi thú vị và đòi hỏi sự thông minh, logic của các bạn học sinh lớp 8. Chúc các em thành công trong việc giải quyết các bài toán này!

Nguồn: sytu.vn

Đọc Sách

Đề HSG huyện Toán 8 vòng 2 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 vòng 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi hình thức tự luận với 10 bài toán, thời gian làm bài 150 phút. Trích dẫn Đề HSG huyện Toán 8 vòng 2 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Biết rằng đa thức f(x) khi chia cho x − 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x² + x – 6. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC, lấy điểm M sao cho BM = 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Cho hình vuông ABCD có cạnh bằng a. Trên cạnh AD lấy điểm M sao cho AM = 3MD. Kẻ tia Bx cắt cạnh CD tại I sao cho ABM = MBI. Kẻ tia phân giác của CBI, tia này cắt cạnh CD tại N. a) Chứng minh rằng: MN = AM + NC. b) Tính diện tích tam giác BMN theo a.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy điểm M sao cho BC = AM, trên tia CB lấy điểm N sao cho CN = BM, CM cắt AN tại P, trên cạnh CD lấy điểm E sao cho CE = CB. 1) Chứng minh tứ giác AMCE là hình bình hành. 2) Chứng minh các tam giác ADE và ECN bằng nhau. 3) Đường thẳng qua A vuông góc với AE cắt đường thẳng qua N vuông góc với NE tại điểm F. Chứng minh tứ giác AENF là hình vuông. 4) Gọi K là giao điểm của EN với PC, L là giao điểm của EF với AN. Tính tỉ số diện tích của hai tam giác NKL và NEP. + Thí sinh lựa chọn làm một (chỉ một) câu trong hai câu sau: 1) Chứng minh rằng nếu 2n (với n N) là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương. 2) Tìm giá trị nhỏ nhất và giá trị lớn nhất của 2 6 2 3 1 x A x. + Cho biểu thức 3 3 3 3 3 A 1 2 3 … 2022 2023. Tìm số dư khi chia số A cho 3.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Sầm Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa.