Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nội

Sáng thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đáp án và lời giải chi tiết của đề thi sẽ được THCS. cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ nhà An đến nhà Bình dài 3 km. Buổi sáng, An đi bộ từ nhà An đến nhà Bình. Buổi chiều cùng ngày, An đi xe đạp từ nhà Bình về nhà An trên cùng quãng đường đó với vận tốc lớn hơn vận tốc đi bộ của An là 9 km/h. Tính vận tốc đi bộ của An, biết thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút (giả định rằng An đi bộ với vận tốc không đổi trên toàn bộ quãng đường đó). + Một quả bóng bàn có dạng một hình cầu có bán kính bằng 2 cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx +4 với m khác 0. a) Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Bình Dương (chuyên)
Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 10 tháng 07 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho tam giác ABC cân tại A (BAC > 90 độ) nội tiếp đường tròn (O) bán kính R, M là điểm nằm trên cạnh BC sao cho BM = CM. Gọi D là giao điểm của AM và đường tròn (O) với D khác A, H là trung điểm của đoạn thẳng BC. Gọi E là điểm chính giữa cung lớn BC, ED cắt BC tại N. a) Chứng minh rằng MA.MD = MB.MC và BN.CM = BM.CN. b) Gọi I là tâm đường tròn ngoại tiếp tam giác BMD. Chứng minh rằng ba điểm B, I, E thẳng hàng. c) Khi 2AB = R, xác định vị trí của M để 2MA + AD đạt giá trị nhỏ nhất. [ads] + Với các số thực x, y thay đổi thỏa mãn 1 ≤ x ≤ y ≤ 5. Tìm giá trị nhỏ nhất của biểu thức: P = 2(x^2 + y^2) + 4(x – y – xy) + 7. + Tìm tất cả các số nguyên x, y thỏa mãn phương trình x^2 + xy + y^2 = x^2.y^2.
Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Lâm Đồng (chuyên Toán)
Thứ Tư ngày 15 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán năm học 2020 – 2021. Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng (chuyên Toán) dành cho thí sinh thi vào các lớp chuyên Toán; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng (chuyên Toán) : + Cho hình thang ABCD (AB //CD), hai đường chéo vuông góc với nhau. Biết AC = 8 cm, BD = 6 cm. Tính chiều cao của hình thang. + Một tổ chức từ thiện cần chia đều một số quyển vở thành các phần quà để tặng cho các cháu nhỏ ở một trung tâm nuôi dạy trẻ mồ côi. Nếu mỗi phần quà giảm 6 quyển vở thì sẽ có thêm 5 phần quà nữa cho các cháu, còn nếu mỗi phần quà giảm 10 quyển vở thì các cháu sẽ có thêm 10 phần quà. Hỏi tổ chức từ thiện trên có bao nhiêu quyển vở. + Cho hai đường tròn (O;R) và đường tròn (O’;R’) tiếp xúc trong tại điểm A (trong đó R > R’). Gọi BC là một dây của đường tròn lớn tiếp xúc với đường tròn nhỏ tại D. Chứng minh rằng AD là tia phân giác của góc BAC.
Đề thi vào 10 môn Toán năm 2020 - 2021 trường chuyên Hoàng Văn Thụ - Hòa Bình (đề chuyên)
Đề thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 trường THPT chuyên Hoàng Văn Thụ – Hòa Bình (đề dành cho học sinh thi vào các lớp chuyên Toán) gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không tính thời gian phát đề). Trích dẫn đề thi vào 10 môn Toán năm 2020 – 2021 trường chuyên Hoàng Văn Thụ – Hòa Bình (đề chuyên) : + Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác của góc A cắt đường tròn (O) tại D. Chứng minh rằng AB + AC < 2AD. + Một ca nô xuôi dòng trên một khúc sông từ bên A đến bến B dài 96km, sau đó lại ngược dòng đến địa điểm C cách bến B là 100km, thời gian ca nô xuôi dòng ít hơn thời gian ngược dòng là 30 phút. Tính vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h. [ads] + Từ một điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M (M khác B, M khác C), từ M kẻ MI, MK, MP lần lượt vuông góc với AB, AC, BC (I thuộc 4B, K thuộc AC, P thuộc BC). 1) Chứng minh rằng: MPK = MBC. 2) Chứng minh rằng: Tam giác MIP đồng dạng với tam giác MIK. 3) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.
Đề thi thử vào 10 môn Toán năm 2020 - 2021 trường THCS Thành Công - Hà Nội
Thứ Bảy ngày 30 tháng 06 năm 2020, trường THCS Thành Công, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THCS Thành Công – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THCS Thành Công – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân cùng làm chung một công việc sau 12 ngày thì hoàn thành. Nếu hai đội làm chung trong 3 ngày, sau đó đội II đi làm việc khác và đội I làm thêm 7 ngày thì được 7/12 công việc. Hỏi mỗi đội làm một mình thì sau bao lâu hoàn thành công việc? [ads] + Một dụng cụ làm bằng thủy tinh dùng để chứa dung dịch có dạng hình nón với độ dài đường sinh là 15 cm và diện tích xung quanh là 135pi cm2. Hãy tính thể tích của dụng cụ đó (bỏ qua bề dày của dụng cụ). + Cho hệ phương trình: x + 2y = 5 và mx + y = 4. Giải hệ phương trình khi m = 3. Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x = |y|.