Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Yên Phong Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Yên Phong Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013-2014 phòng GD ĐT Yên Phong Bắc Ninh Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013-2014 phòng GD ĐT Yên Phong Bắc Ninh Đề học sinh giỏi huyện Toán lớp 8 năm 2013-2014 phòng GD&ĐT Yên Phong-Bắc Ninh là bài thi có độ khó cao, đầy thách thức dành cho các học sinh có năng khiếu và niềm đam mê với môn học Toán. Trong đề thi, có nhiều câu hỏi thuộc những chủ đề khá phổ biến như hình thang, từ đó giúp học sinh rèn luyện kiến thức cơ bản và nâng cao kỹ năng giải toán của mình. Với các câu hỏi về tứ giác, diện tích hình thang, góc toán học, học sinh sẽ phải thể hiện khả năng suy luận logic và tính toán chính xác để có thể đạt điểm cao. Câu hỏi cuối cùng dành cho thí sinh trường THCS Yên Phong đòi hỏi họ phải có kiến thức vững và biết kết hợp nhiều khái niệm để giải quyết vấn đề đề ra. Việc chứng minh tính đúng đắn của biểu thức toán học cũng là một yếu tố quan trọng đánh giá khả năng tư duy logic của học sinh. Trong tổng thể, đề học sinh giỏi huyện Toán lớp 8 năm 2013-2014 phòng GD&ĐT Yên Phong-Bắc Ninh là một bài kiểm tra toàn diện, giúp học sinh phát triển khả năng tư duy logic, xử lý vấn đề và rèn luyện kỹ năng giải toán. Học sinh cần phải ôn tập, luyện tập thực sự cẩn thận để có kết quả tốt trong kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 8 vòng 1 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 1 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 1 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Tìm số tự nhiên n để B = n3 – n2 – 7n + 10 là số nguyên tố. Tìm n nguyên để C = n4 + 2n3 + 2n2 + n +7 là số chính phương. + Cho tam giác ABC vuông tại A, O là trung điểm của BC. Vẽ tia Bx vuông góc với BC (Bx cùng phía với điểm A đối với đường thẳng BC). Qua A vẽ đường thẳng vuông góc với AO cắt Bx ở M. Đường thẳng qua O và song song với AB cắt AM ở D, AC ở F. Đường thẳng MO cắt AB ở E. a) Chứng minh rằng: EF = AO. b) BD cắt CM ở I. Chứng minh rằng: Ba điểm E, I, F thẳng hàng. + Cho tam giác MNP có MN = 5cm, MP = 6cm, NP = 7cm. Gọi I là giao điểm của ba đường phân giác, G là trọng tâm của tam giác MNP. Chứng minh rằng: IG // MP.
Đề HSG cấp huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nam Trực – Nam Định : + Cho tam giác ABC nhọn (AB AC) có đường cao AH và BK cắt nhau tại D. Gọi M là trung điểm của AB P là điểm đối xứng với H qua M. a) Chứng minh AHBP là hình vuông. b) Chứng minh HP MK 2 và BHD AHC. c) Qua D kẻ đường thẳng vuông góc với AH tại D, qua C kẻ đường thẳng vuông góc với BC tại C, hai đường thẳng này cắt nhau tại Q. Chứng minh P K Q thẳng hàng. + Tìm đa thức dư khi chia đa thức P x cho đa thức 2 x 1 biết đa thức P x chia cho x 1 được dư là 4 và khi chia cho 2 x 1 được dư là 3 5 x. Cho x y là các số thực thỏa mãn x y 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 C x y y x xy 4 4 8. + Lấy 2020 điểm thuộc miền trong của một tứ giác để cùng với 4 đỉnh ta được 2024 điểm, trong đó không có 3 điểm nào thẳng hàng. Biết diện tích của tứ giác ban đầu là 1 2 cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2024 điểm đã cho có diện tích không vượt quá 1 2 4042 cm.
Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Phúc Thọ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Phúc Thọ, huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Phúc Thọ – Nghệ An : + Cho a, b, c là các số nguyên thoả mãn 3 a b 2024c c. Chứng minh rằng: 333 abc chia hết cho 6. + Cho hình vuông ABCD trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. a) Chứng minh MNPQ hình vuông. b) Tìm vị trí của M, N, P, Q để diện tích tứ giác MNPQ đạt giá trị nhỏ nhất. Cho tam giác ABC (AB < AC), M là trung điểm của BC. Một đường thẳng qua M và song song với phân giác của góc BAC cắt AC, AB lần lượt tại E, F. Chứng minh CE = BF. + Cho các số nguyên dương a và b thoả mãn 2 2 S a b ab a b 3 2023 chia hết cho 5. Tìm số dư khi chia a – b cho 5.