Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2024 - 2025 phòng GDĐT Thái Hòa - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2024 – 2025 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 2 năm 2024 – 2025 phòng GD&ĐT Thái Hòa – Nghệ An : + Hai đội công nhân cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu đội thứ nhất làm riêng trong 6 ngày rồi dừng lại và đội thứ hai làm tiếp công việc đó trong 10 ngày thì cả hai đội hoàn thành được 50% công việc. Hỏi nếu mỗi đội làm riêng thì trong bao nhiêu ngày mới xong công việc trên? + Một thùng nước có dạng hình trụ với chiều cao 1,8m và đường kính đáy 1,2 m. Người ta sơn toàn bộ phía ngoài mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước đó (lấy π ≈ 3,14). + Cho đường tròn (O) và dây BC cố định không đi qua tâm O. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại điểm H. Gọi I là giao điểm của AD và EF. 1) Chứng minh CEHD là tứ giác nội tiếp. 2) Chứng minh DEH FEH và 112 DH DA DI. 3) Tia AD cắt đường tròn (O) tại điểm M và tia ME cắt đường tròn (O) tại điểm N (M khác A và N khác M). Gọi K là giao điểm của BN và EF. Chứng minh đường thẳng AK luôn đi qua một điểm cố định khi A thay đổi.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 sở GD ĐT Bạc Liêu Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 sở GD ĐT Bạc Liêu Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến quý vị đề thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GD&ĐT Bạc Liêu: + Tìm hệ số a để đồ thị hàm số \(y = ax^2\) đi qua điểm M(-1;2). Vẽ đồ thị của hàm số \(y = ax^2\) với giá trị a vừa tìm được. + Cho phương trình bậc hai \(x^2 - 2x + m - 2 = 0\) (1) với m là tham số. a) Xác định các hệ số a, b, c của phương trình (1). b) Giải phương trình (1) khi m = -1. c) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: \(3(x_1^2 + x_2^2) + x_1^2x_2^2 = 11\). + Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với B tại H (H thuộc đoạn OA, H khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O) (E khác A), N là giao điểm của hai đường thẳng BE và CD. a) Chứng minh tứ giác MEBH nội tiếp đường tròn. b) Chứng minh: \(NC \times ND = NB \times NE\). c) Khi AC = R, xác định vị trí của điểm M để \(2AM + AE\) đạt giá trị nhỏ nhất. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công! Xin cám ơn!
Đề tuyển sinh môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán (chuyên) trường THPT chuyên ĐHSP Hà Nội Đề thi tuyển sinh Toán (chuyên) trường THPT chuyên ĐHSP Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2023 của trường THPT chuyên Đại học Sư Phạm Hà Nội. Đề thi này dành riêng cho thí sinh muốn chuyên học Toán và Tin học ở vòng 2 của kỳ thi tuyển sinh. Trích đề thi: 1. Cho tam giác ABC. Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB tại D, E, F. Hai đường thẳng MG, NE cắt nhau tại P. Chứng minh rằng: a) Đường EG song song với đường MN. b) Điểm P thuộc đường tròn (I). 2. Bảy lục giác đều được sắp xếp và tô màu bằng hai màu trắng và đen như Hình 1. Mỗi lần chọn một lục giác đều, đổi màu của lục giác đó và tất cả các lục giác chung cạnh với nó (từ trắng thành đen và ngược lại). Chứng minh rằng không thể tô được các lục giác như Hình 2 dù bao nhiêu lần thực hiện cách làm trên. 3. Chứng minh rằng tồn tại số nguyên dương n > 102023 sao cho tổng tất cả các số nguyên tố nhỏ hơn n là số nguyên tố cùng nhau với n.
Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên ĐHSP Hà Nội
Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2023 trường THPT chuyên ĐHSP Hà Nội Đề thi tuyển sinh môn Toán năm 2023 trường THPT chuyên ĐHSP Hà Nội Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến quý vị đề thi tuyển sinh vào lớp 10 môn Toán năm 2023 của trường THPT chuyên Đại học Sư Phạm Hà Nội. Đề thi này dành cho mọi thí sinh ở vòng 1, kèm theo đáp án và lời giải chi tiết. Đề thi bao gồm các câu hỏi thú vị như sau: Trong một khay nước, nhiệt độ ban đầu là 125°F. Sau mỗi giờ ở trong tủ đá, nhiệt độ giảm đi 20%. Hỏi sau bao lâu, nhiệt độ chỉ còn 64°F? Cho hình bình hành ABCD có ABC = 120° và BC = 2AB. Dựng đường tròn (O) có đường kính AC. Chứng minh các phát biểu liên quan đến tam giác ABD và tứ giác OBEH. Xét đa thức P(x) = ax² + bx + c. Tạo ra đa thức mới P1(x) = P(x + 1) + P(x - 1)² và tiếp tục quá trình này. Chứng minh rằng khi tiếp tục làm như vậy, ta sẽ đến một đa thức không có nghiệm. Hy vọng đề thi sẽ là cơ hội cho các em thực hành và củng cố kiến thức môn Toán. Chúc quý thí sinh tự tin và thành công trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Bạc Liêu Đề thi tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Bạc Liêu Chào các thầy cô giáo và các em học sinh, Sytu xin giới thiệu đến quý vị đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào ngày 31 tháng 05 năm 2023. Dưới đây là một số câu hỏi trong đề thi: 1. Cho biểu thức \( H = n^2 - n - 5 \). Tìm tất cả các số nguyên dương n để H là một số chính phương. Tìm các số nguyên x, y sao cho: \( x(x + y)^2 = y - 1 \). 2. Cho tam giác ABC đều nội tiếp đường tròn (O). H là trung điểm của BC; M là điểm bất kì thuộc đoạn thẳng BH (M khác B; M khác H). Lấy điểm N thuộc đoạn thẳng CA sao cho CN = BM. Gọi I là trung điểm của MN. Cần chứng minh một số tính chất của các điểm O, M, H, I và tam giác MNK. 3. Cho đường tròn (O;R) có dây BC cố định (BC < 2R) và điểm A trên cung lớn BC (A khác B; A khác C; A không là điểm chính giữa cung lớn BC). Cần chứng minh một số tính chất về hình chiếu của các điểm trên đường tròn. Hy vọng rằng bài viết trên sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!