Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 - 2018 sở GDĐT Thanh Hóa

Ngày 10 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 khối THCS năm học 2017 – 2018, kỳ thi nhằm tuyển chọn những em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc để tuyên dương và khen thưởng, làm mục tiêu phấn đấu cho học sinh tỉnh nhà, các em được chọn sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi HSG Toán 9 cấp Quốc gia. Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, thời gian làm bài thi 150 phút, đề thi gồm có 01 trang, có hướng dẫn giải và biểu điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2017 – 2018 sở GD&ĐT Thanh Hóa : + Cho a, b là các số nguyên dương thỏa mãn p = a^2 + b^2 là số nguyên tố và p – 5 chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax^2 – by^2 chia hết cho p. Chứng minh rằng cả hai số x, y chia hết cho p. + Biết phương trình (m – 2)x^2 – 2(m – 1)x + m = 0 có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm m để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng 2/√5. + Cho tam giác ABC có (O), (I), (Ia) theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là O, I, Ia. Gọi D là tiếp điểm của (I) với BC, P là điểm chính giữa cung BAC của (O), PIa cắt (O) tại điểm K. Gọi M là giao điểm của PO và BC, N là điểm đối xứng với P qua O. 1. Chứng minh IBIaC là tứ giác nội tiếp. 2. Chứng minh NIa là tiếp tuyến của đường tròn ngoại tiếp tam giác IaMP. 3. Chứng minh DAI = KAIa.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi năm học 2017 - 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải - Thái Bình
Đề thi học sinh giỏi (HSG) năm học 2017 – 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải – Thái Bình gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi : + Tìm các số a, b sao cho đa thức f(x) = x^4 + ax^3 + bx – 1 chia hết cho đa thức x^2 – 3x + 2. + Chứng minh rằng : B = 4x(x + y)(x + y + z)(x + z) + y^2.z^2 là một số chính phương với x, y, z là các số nguyên. + Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. [ads] a) Biết AB = 6 cm, HC = 6,4 cm. Tính BC, AC b) Chứng minh: DE^3 = BC.BD.CE c) Đường thẳng kẻ qua B vuông góc với BC cắt HD tại M, đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh M, A, N thẳng hàng d) Chứng minh rằng : BN, CM, DE đồng quy + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + c^x + d (với a, b, c là các số thực). Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị biểu thức A = f(8) – f(-4).
Đề thi chọn học sinh giỏi tỉnh Toán 9 THCS năm học 2016-2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh Toán 9 THCS năm học 2016-2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O, R). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc CA, F thuộc AB). Tia EF cắt tia CB tại P, AP cắt đường tròn (O,R) tại M (M khác A). [ads] a) Chứng minh rằng: PE.PF = PM.PA và AM vuông góc với HM. b) Cho cạnh BC cố định, điểm A di chuyển trên cung lớn BC. Xác định vị trí của A để diện tích tam giác BHC đạt giá trị lớn nhất. + Cho tam giác ABC có góc A nhọn, nội tiếp đường tròn tâm O. Một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho đường tròn (O). Qua điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AM, AN (M, N là hai tiếp điểm) và cát tuyến ABC với đường tròn (B nằm giữa A và C). Gọi I là trung điểm của BC. a) Chứng minh: A, M, O, I, N thuộc một đường tròn; b) Chứng minh: IA là tia phân giác của MIN; c) Vẽ dây CD song song MN, H là giao điểm của BD và MN. Chứng minh: HM = HN. + Cho phương trình: x2 – (m + 5)x + 3m + 6 = 0. Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh tam giác vuông có cạnh huyền bằng 5. + Cho biểu thức: P a) Rút gọn P; b) Tính giá trị của P với x 9 45; c) Tìm các giá trị chính phương của x để P có giá trị nguyên.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 19/3/2017, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.