Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tham khảo kỳ thi THPT Quốc gia năm 2020 môn Toán

Đúng như kế hoạch đã đề ra trước đó, chiều thứ Sáu ngày 03 tháng 04 năm 2020, Bộ Giáo dục và Đào tạo công bố đề thi tham khảo kỳ thi Trung học Phổ thông Quốc gia năm 2020 bài thi Toán (cách gọi khác: đề minh họa THPT Quốc gia 2020 môn Toán), giúp các em học sinh khối 12 nắm được các thông tin quan trọng về đề thi Toán: hình thức đề thi, các nội dung Toán THPT trọng tâm, độ khó. Đề thi tham khảo kỳ thi THPT Quốc gia năm 2020 môn Toán gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, sẽ nhanh chóng cập nhật đáp án và lời giải chi tiết của đề thi sớm nhất có thể. Trích dẫn đề thi tham khảo kỳ thi THPT Quốc gia năm 2020 môn Toán : + Từ một nhóm học sinh gồm 6 nam và 8 nữ, có bao nhiêu cách chọn ra một học sinh? + Cho hình trụ có bán kính đáy bằng 3. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng qua trục, thiết diện thu được là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng? [ads] + Để dự báo dân số của một quốc gia, người ta sử dụng công thức S = Ae^nr, trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hàng năm. Năm 2017, dân số Việt Nam là 93.671.600 người (Tổng cục Thống kê, Niên giám thống kê 2017, Nhà xuất bản Thống kê, Tr.79). Giả sử tỉ lệ tăng dân số hàng năm không đổi là 0,81%, dự báo dân số Việt Nam năm 2015 là bao nhiêu người (kết quả làm tròn đến chữ số hàng trăm)? + Cho hình chóp S.ABCD có đáy là hình thang, AB = 2a, AD = DC = CB = a, SA vuông góc với mặt phẳng đáy và SA = 3a (minh họa như hình bên). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SB và DM bằng? + Cho hình nón có chiều cao bằng 2√5. Một mặt phẳng đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác đều có diện tích bằng 9√3. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 năm 2022 - 2023 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình (mã đề 105); hướng đến kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Khẳng định nào sau đây sai? A. Đồ thị hàm số y = (1/2)x nhận trục hoành làm đường tiệm cận ngang. B. Hàm số y = 2^x và y = log2x đồng biến trên mỗi khoảng mà hàm số xác định. C. Hàm số y = log1/2x có tập xác định là (0;+vc). D. Đồ thị hàm số y = log2-1x nằm phía trên trục hoành. + Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0). Gọi (P) là mặt phẳng đi qua các điểm A, B đồng thời cắt tia Oz tại điểm C sao cho tứ diện OABC có thể tích bằng 1/6. Phương trình mặt phẳng (P) là? + Trong tập hợp các số phức, cho phương trình z3 + (1 – 2m)z2 + 2mz + 4m = 0 với tham số m thuộc R. Gọi S là tập hợp các giá trị của m để phương trình có 3 nghiệm phân biệt và 3 điểm biểu diễn 3 nghiệm đó tạo thành tam giác đều. Tổng tất cả các phần tử của tập S bằng?
Đề khảo sát cuối năm Toán 12 năm 2022 - 2023 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng cuối năm môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Nam; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát cuối năm Toán 12 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Trên tập hợp số phức, xét phương trình 2 z 1 2z m (m là tham số thực). Gọi T là tập hợp tất cả các giá trị của m để phương trình trên có nghiệm z thỏa mãn z 3. Tổng các phần tử của T bằng? + Cho mặt cầu có bán kính S bằng 5. Mặt phẳng P cắt mặt cầu theo giao tuyến là đường tròn C có chu vi bằng. Xét 6 tứ diện có ABCD đáy là tam giác ABC đều nội tiếp đường tròn C còn di D chuyển trên mặt cầu. Giá trị lớn nhất của thể tích S khối tứ diện ABCD bằng? + Có tất cả bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn [0;2] không vượt quá 15?
Đề khảo sát chất lượng Toán 12 năm 2022 - 2023 cụm Yên Phong - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 năm học 2022 – 2023 cụm Yên Phong, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2022 – 2023 cụm Yên Phong – Bắc Ninh : + Trong không gian Oxyz, cho hai điểm A B 4 2 4 264 và đường thẳng 5 1 x d y z t. Gọi M là điểm di động thuộc mặt phẳng Oxy sao cho AMB 90 và N là điểm di động luôn cách d một khoảng là 1 đơn vị và cách mặt phẳng Oxy một khoảng không quá 3 đơn vị. Tổng giá trị nhỏ nhất và giá trị lớn nhất của MN bằng? + Trên tập hợp các số phức, phương trình 2 z a za 2 2 30 (a là tham số thực) có 2 nghiệm 1 z 2 z. Gọi M N là điểm biểu diễn của 1 z 2 z trên mặt phẳng tọa độ. Biết rằng có 2 giá trị 1 2 a a của tham số a để tam giác OMN có một góc bằng 120. Tổng 1 2 a a bằng? + Biết a b (trong đó a b là phân số tối giản và b) là giá trị của tham số m để hàm số 2 2 32 2 23 1 3 3 y x mx m x có 2 điểm cực trị 1 x 2 x sao cho xx 12 1 2 2 1. Giá trị biểu thức Ta b 2 là?
Đề khảo sát chất lượng Toán 12 năm 2022 - 2023 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118 – 119 – 120 – 121 – 122 – 123 – 124. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho hình nón đỉnh S có đường tròn đáy tâm O và góc ở đỉnh bằng 120. Một mặt phẳng đi qua S cắt hình nón theo thiết diện là tam giác SAB. Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3, diện tích xung quanh của hình nón đã cho bằng 18 3. Tính diện tích tam giác SAB. + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu 2 2 4 4 0 S x y z x y và hai điểm A B 4 2 4 1 4 2. MN là dây cung của mặt cầu thỏa mãn MN cùng hướng với u = (0;1;1) và MN 4 2. Tính giá trị lớn nhất của AM BN. + Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi cùng màu là khác nhau). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả?