Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án

Tài liệu gồm 296 trang, tuyển tập 3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán. Trích dẫn tài liệu 3296 bài tập trắc nghiệm thể tích khối đa diện có đáp án: + Có một khối gỗ dạng hình chóp O.ABC có OA, OB, OC đôi một vuông góc với nhau, OA = 3 cm, OB = 6 cm, OC = 12 cm. Trên mặt (ABC) người ta đánh dấu một điểm M sau đó người ta cắt gọt khối gỗ để thu được một hình hộp chữ nhật có OM là một đường chéo đồng thời hình hộp có 3 mặt nằm trên 3 mặt của tứ diện (xem hình vẽ). Thể tích lớn nhất của khối gỗ hình hộp chữ nhật bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành. Góc tạo bởi mặt bên (SAB) với đáy bằng α. Tỉ số diện tích của tam giác SAB và hình bình hành ABCD bằng k. Mặt phẳng (P) đi qua AB và chia hình chóp S.ABCD thành hai phần có thể tích bằng nhau. Gọi β là góc tạo bởi mặt phẳng (P) và mặt đáy. Tính cot β theo k và α. + Nhân ngày Phụ Nữ Việt Nam 20/10/2020, ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp. Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp, biết rằng độ dày lớp mạ vàng tại mọi điểm trên hộp là như nhau. Gọi chiều cao và độ dài cạnh đáy của chiếc hộp lần lượt là h và x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h và x phải là?

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Tài liệu gồm 141 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hàm số lũy thừa, hàm số mũ và hàm số lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC hàm số lũy thừa, hàm số mũ và hàm số lôgarit: CHỦ ĐỀ 1 . LŨY THỪA. Dạng 1. Các phép toán biến đổi lũy thừa. Dạng 2. So sánh, đẳng thức và bất đẳng thức đơn giản. CHỦ ĐỀ 2 . HÀM SỐ LŨY THỪA. Dạng 1. Tìm tập xác định của hàm số lũy thừa. Dạng 2. Đồ thị hàm số lũy thừa. CHỦ ĐỀ 3 . LÔGARIT. Dạng 1. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. Dạng 2. Đẳng thức chứa logarit. Dạng 3. Biểu thị biểu thức theo một biểu thức đã cho và từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN). CHỦ ĐỀ 4 . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. Dạng 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. Dạng 2. Đồ thị hàm số mũ – lôgarit. Dạng 3. Xét tính đơn điệu, cực trị, GTLN và GTNN của hàm số mũ – logarit. Dạng 4. Tìm GTLN và GTNN của hàm số mũ – logarit nhiều biến. Dạng 5. Bài toán lãi suất. CHỦ ĐỀ 5 . PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. Dạng 1. Phương pháp đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa, mũ hóa. Dạng 4. Phương pháp biến đổi thành tích. Dạng 5. Phương pháp sử dụng tính đơn điệu. CHỦ ĐỀ 6 . BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa. Dạng 4. Phương pháp sử dụng tính đơn điệu.
Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit
Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) bất phương trình mũ và bất phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa. Dạng 4. Phương pháp sử dụng tính đơn điệu. Xem thêm : Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Tài liệu gồm 41 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mũ và phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC phương trình mũ và phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM I. PHƯƠNG TRÌNH MŨ. 1. Phương trình mũ cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số; Phương pháp đặt ẩn phụ; Logarit hóa. II. PHƯƠNG TRÌNH LOGARIT. 1. Phương trình logarit cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số, Phương pháp đặt ẩn phụ; Mũ hóa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa, mũ hóa. Dạng 4. Phương pháp biến đổi thành tích. Dạng 5. Phương pháp sử dụng tính đơn điệu.
Các dạng bài tập VDC hàm số mũ và hàm số lôgarit
Tài liệu gồm 37 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hàm số mũ và hàm số lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC hàm số mũ và hàm số lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Hàm số mũ. 2. Hàm số lôgarit. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. Dạng 2. Đồ thị hàm số mũ – lôgarit. Dạng 3. Xét tính đơn điệu, cực trị, GTLN và GTNN của hàm số mũ – logarit. Dạng 4. Tìm GTLN và GTNN của hàm số mũ – logarit nhiều biến. Dạng 5. Bài toán lãi suất. Xem thêm : + Bài tập VD – VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông