Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit ôn thi tốt nghiệp THPT môn Toán

Tài liệu gồm 360 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. Dạng 2. Biến đổi logarit. Dạng 3. Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit. Dạng 4. Bài tập về phương trình mũ – logarit số 01. Dạng 5. Bài tập về phương trình mũ – logarit số 02. Dạng 6. Phương trình mũ – logarit chứa tham số 01. Dạng 7. Phương trình mũ – logarit chứa tham số 02. Dạng 8. Biện luận nghiệm phương trình mũ – logarit. Dạng 9. GTNN – GTLN của hàm số mũ – logarit. Dạng 10. Bài toán liên quan đến hàm đặc trưng. Dạng 11. Bài toán tìm cặp số nguyên thỏa mãn. Dạng 12. Bài toán lãi kép. Dạng 13. Bài toán liên quan đến tăng trưởng. Dạng 14. Mũ – logarit trong đề thi của Bộ Giáo dục và Đào tạo.

Nguồn: toanmath.com

Đọc Sách

Bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ - logarit - Hoàng Xuân Bính
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Hoàng Xuân Bính (giáo viên Toán tiếp sức chinh phục kì thi tốt nghiệp THPT năm học 2019 – 2020), hướng dẫn phương pháp giải các bài toán giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN / max – min) của các biểu thức liên quan đến khái niệm hàm số mũ và logarit, đây là dạng toán thường gặp trong các đề thi thử tốt nghiệp THPT môn Toán. Các dạng toán trong tài liệu bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ – logarit – Hoàng Xuân Bính: + Dạng toán 1 : Đặt ẩn phụ để biến đổi logarit. + Dạng toán 2 : Sử dụng bất đẳng thức cổ điển (Cauchy, Cauchy Schwarz …). + Dạng toán 3 : Cực trị hình học.
Tuyển tập các câu hỏi VD - VDC mũ - logarit hay và khó
Tài liệu gồm 60 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển chọn 600 câu hỏi và bài toán mức độ vận dụng – vận dụng cao chủ đề mũ và logarit từ các đề thi thử tốt nghiệp THPT môn Toán; giúp học sinh ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán, ôn thi học sinh giỏi Toán THPT. Trích dẫn tài liệu tuyển tập các câu hỏi VD – VDC mũ – logarit hay và khó: + Cho hàm số f(x) = (2 + √3)^x − (2 − √3)^x, có tất cả bao nhiêu giá trị nguyên của tham số m ∈ [−2019; 2020] để bất phương trình f(2019^x + 2020x − m) + f(2020^x − 2019x − m) ≤ 0 có nghiệm trên đoạn [0; 2020]. + Cho hàm số f(x) là hàm đa thức hệ số thực, có đồ thị hàm số y = f(x) và y = f'(x) như hình vẽ dưới. Biết rằng phương trình f(x) = me^x có hai nghiệm thực phân biệt thuộc đoạn [0;2] khi và chỉ khi m thuộc nửa khoảng [a;b). Giá trị của biểu thức a + b gần với giá trị nào dưới đây nhất? [ads] + Gọi A, B là các điểm lần lượt thuộc đồ thị các hàm số y = e^x và y = e^−x sao cho tam giác OAB nhận điểm M (1; 1) làm trọng tâm. Khi đó tổng các giá trị của hoành độ và tung độ điểm A gần với giá trị nào sau đây nhất? Xem thêm : Tuyển tập các bài toán mũ và logarit hay và đặc sắc – Nguyễn Xuân Nhật
Tổng ôn tập TN THPT 2020 môn Toán Phương trình - bất phương trình - GTLN - GTNN mũ và logarit
Tài liệu gồm 96 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: phương trình và bất phương trình mũ và logarit, GTLN – GTNN (max – min) mũ và logarit; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình – bất phương trình – GTLN – GTNN mũ và logarit: A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT 1. Phương pháp đưa về cùng cơ số. + Phương trình và bất phương trình mũ cơ bản. + Phương trình logarit và bất phương trình logarit cơ bản. 2. Phương pháp đặt ẩn phụ. + Đặt ẩn phụ cho phương trình mũ. + Đặt ẩn phụ cho phương trình logarit. 3. Phương pháp hàm số. + Cơ sở lý thuyết và vận dụng cơ sở lý thuyết để tìm hướng giải. + Một số loại toán cơ bản thường gặp khi sử dụng đơn điệu hàm số. [ads] B. BÀI TOÁN CHỨA THAM SỐ + Dạng 1. Tìm m để f(t;m) = 0 có nghiệm (hoặc có k nghiệm) trên D. + Dạng 2. Tìm m để bất phương trình f(t;m) ≥ 0 hoặc f(t;m) ≤ 0 có nghiệm trên miền D. C. GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT MŨ VÀ LOGARIT
Tổng ôn tập TN THPT 2020 môn Toán Hàm số lũy thừa - hàm số mũ - hàm số logarit
Tài liệu gồm 60 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hàm số lũy thừa – hàm số mũ – hàm số logarit, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hàm số lũy thừa – hàm số mũ – hàm số logarit: A. Biến đổi công thức B. Hàm số lũy thừa – mũ – logarit + Hàm lũy thừa. + Hàm số mũ. + Hàm số logarit. + Đồ thị hàm số mũ. + Đồ thị hàm số logarit. [ads] C. Bài toán thực tế 1. Lãi đơn. 2. Lãi kép. 3. Bài toán tăng trưởng dân số. 4. Vay vốn trả góp. 5. Tiền gửi hàng tháng. D. Phương trình – bất phương trình cơ bản 1. Đạo hàm của hàm số mũ và lôgarit. 2. Phương trình mũ – lôgarit. 3. Bất phương trình mũ và lôgarit. 4. Các phương pháp giải phương trình, bất phương trình mũ và lôgarit.