Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 11 năm 2023 - 2024 trường THPT Bảo Lộc - Lâm Đồng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2023 – 2024 trường THPT Bảo Lộc, tỉnh Lâm Đồng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 1 Toán 11 năm 2023 – 2024 trường THPT Bảo Lộc – Lâm Đồng : + Cho mẫu số liệu như sau. Khi đó mốt của mẫu số liệu đã cho là? (làm tròn và lấy một chữ số thập phân). + Trong không gian, cho hai hình bình hành ABCD và ABEF không cùng thuộc một mặt phẳng (tham khảo hình vẽ bên). Gọi O O lần lượt là tâm của ABCD và ABEF. Chọn khẳng định đúng trong các khẳng định sau? + Trong không gian, khi nói về phép chiếu song song. Ta chỉ xét ảnh của đường thẳng, tia, đoạn thẳng không song song với phương chiếu. Hãy chọn khẳng định đúng trong các khẳng định sau: A. Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm không thẳng hàng. B. Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và làm thay đổi thứ tự ba điểm đó. C. Hình chiếu song song của hai đường thẳng song song là hai đường thẳng song song hoặc trùng nhau. D. Phép chiếu song song làm thay đổi tỷ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau.

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.