Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Chín Em

Tài liệu gồm 971 trang được biên soạn bởi tác giả Nguyễn Chín Em trình bày kiến thức trọng tâm, các dạng toán và bài tập trắc nghiệm các chủ đề: hệ tọa độ Oxyz trong không gian, phương trình mặt phẳng, phương trình đường thẳng, phương trình mặt cầu; giúp học sinh tự học chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian Oxyz và ôn thi THPT Quốc gia môn Toán. Bài tập trắc nghiệm Oxyz trong tài liệu được phân loại theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề phương pháp tọa độ trong không gian – Nguyễn Chín Em: BÀI 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN A KIẾN THỨC TRỌNG TÂM 1 Hệ tọa độ trong không gian. 2 Tọa độ một điểm. 3 Tọa độ của một véc-tơ. 4 Biểu thức toạ độ của các phép toán véc-tơ. 5 Biểu thức toạ độ của tích vô hướng và một số ứng dụng. 6 Tích có hướng của hai véc-tơ và ứng dụng. 7 Các bất đẳng thức vectơ. 8 Phương trình mặt cầu. B CÁC DẠNG TOÁN 1 Tìm tọa độ của vectơ và của điểm. 2 Chứng minh ba vectơ đồng phẳng hoặc không đồng phẳng. 3 Tích vô hướng và các ứng dụng. 4 Chứng minh các tính chất hình học. 5 Chứng minh các bất đẳng thức. 6 Mặt cầu. C BÀI TẬP RÈN LUYỆN D CÂU HỎI TRẮC NGHIỆM BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG A KIẾN THỨC TRỌNG TÂM 1 Véc-tơ pháp tuyến. 2 Phương trình tổng quát của mặt phẳng. + Điều kiện để hai mặt phẳng song song, vuông góc. + Khoảng cách từ một điểm đến một mặt phẳng. + Góc giữa hai mặt phẳng. B CÁC DẠNG TOÁN 1 Viết phương trình mặt phẳng trung trực của đoạn thẳng AB cho trước. 2 Viết phương trình mặt phẳng đi qua một điểm và có cặp véc-tơ chỉ phương cho trước. 3 Viết phương trình mặt phẳng (P) đi qua M và vuông góc với đường thẳng d đi qua hai điểm A và B. 4 Viết phương trình mặt phẳng (P) đi qua A, B và vuông góc với mặt phẳng (Q). 5 Viết phương trình mặt phẳng (P) đi qua điểm M và chứa đường thẳng ∆. 6 Viết phương trình mặt phẳng (P) chứa hai đường thẳng song song ∆1 và ∆2. 7 Viết phương trình mặt phẳng (P) chứa hai đường thẳng cắt nhau ∆1 và ∆2. 8 Viết phương trình mặt phẳng (P) chứa đường thẳng ∆1 và song song với đường thẳng ∆2 với ∆1 và ∆2 chéo nhau. 9 Viết phương trình mặt phẳng (P) đi qua M, đồng thời vuông góc với hai mặt phẳng (α) và (β). 10 Viết phương trình mặt phẳng (P) đi qua điểm M và giao tuyến của hai mặt phẳng (α), (β). 11 Viết phương trình mặt phẳng (P) tạo với mặt phẳng (Q) cho trước một góc α. 12 Viết phương trình mặt phẳng (P) liên quan đến khoảng cách. C CÂU HỎI TRẮC NGHIỆM [ads] BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG A KIẾN THỨC TRỌNG TÂM 1 Phương trình tham số của đường thẳng. 2 Điều kiện để hai đường thẳng song song, trùng nhau, cắt nhau hoặc chéo nhau. 3 Điều kiện để một đường thẳng song song, cắt hoặc vuông góc với một mặt phẳng. 4 Khoảng cách. + Khoảng cách từ một điểm đến một đường thẳng. + Khoảng cách giữa hai đường thẳng chéo nhau. B CÁC DẠNG TOÁN 1 Đường thẳng đi qua một điểm và véc-tơ chỉ phương cho trước. 2 Viết phương trình đường thẳng giao tuyến của hai mặt phẳng. 3 Viết phương trình đường thẳng đi qua điểm M và vuông góc với hai đường thẳng cho trước. 4 Viết phương trình đường thẳng đi qua điểm M, cắt và vuông góc với một đường thẳng cho trước. 5 Viết phương trình đường thẳng đi qua điểm M, vuông góc với (d1) và cắt (d2). 6 Viết phương trình đường thẳng đi qua điểm M cắt cả hai đường thẳng (d1) và (d2). 7 Viết phương trình đường thẳng (d) nằm trong mặt phẳng (P) cắt cả hai đường thẳng (d1), (d2). 8 Viết phương trình đường thẳng (d) song song với (∆) cắt cả hai đường thẳng (a) và (b). 9 Viết phương trình đường thẳng vuông góc chung của hai đường thẳng chéo nhau (a) và (b). 10 Viết phương trình đường thẳng (d) là hình chiếu vuông góc của (a) lên mặt phẳng (P). 11 Viết phương trình đường thẳng (d) đối xứng với (a) qua mặt phẳng (P). 12 Tìm hình chiếu vuông góc của một điểm trên một đường thẳng. 13 Tìm hình chiếu vuông góc của một điểm trên một mặt phẳng. 14 Vị trí tương đối giữa hai mặt cầu. 15 Xét vị trí tương đối giữa hai mặt phẳng. 16 Xét vị trí tương đối giữa mặt phẳng và mặt cầu. C DẠNG TOÁN TỔNG HỢP D CÂU HỎI TRẮC NGHIỆM BÀI 4 . MẶT CẦU A KIẾN THỨC TRỌNG TÂM 1 Phương trình mặt cầu. B CÁC DẠNG TOÁN 1 Viết phương trình mặt cầu. 2 Dạng toán tổng hợp liên quan đến phương trình mặt cầu. C CÂU HỎI TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Các dạng toán phương trình đường thẳng Oxyz - Nguyễn Bảo Vương
Tài liệu gồm 28 trang do thầy Nguyễn Bảo Vương biên soạn tuyển tập các dạng toán phương trình đường thẳng trong hệ trục tọa độ Oxyz, trong mỗi dạng toán đều được trình bày chi tiết các bước giải toán, ví dụ minh họa và các bài tập trắc nghiệm tự luyện. Các dạng toán phương trình đường thẳng Oxyz được đề cập trong tài liệu: + Dạng 1. Phương trình đường thẳng + Dạng 2. Viết phương trình đường thẳng + Dạng 3. Vị trí tương đối của đường thẳng với mặt phẳng + Dạng 4. Vị trí tương đối của hai đường thẳng + Dạng 5. Vị trí tương đối của mặt cầu và đường thẳng Xem thêm : + Bài giảng hệ tọa độ trong không gian – Nguyễn Bảo Vương + Các dạng toán phương trình mặt phẳng – Nguyễn Bảo Vương
Các dạng toán phương trình mặt phẳng - Nguyễn Bảo Vương
Tài liệu gồm 68 trang được biên soạn bởi thầy Nguyễn Bảo Vương bao gồm tóm tắt lý thuyết, các dạng toán, hướng dẫn giải và bài tập về chủ đề phương trình mặt phẳng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian, các bài toán trong tài liệu có đáp án và lời giải chi tiết. Các dạng toán về phương trình mặt phẳng và cách giải : Dạng 1 . Phương trình mặt phẳng Phương pháp : Phương trình: Ax + By + Cz + D = 0 là phương trình của một mặt phẳng khi và chỉ khi A2 + B2 + C2 > 0. Chú ý : Đi kèm với họ mặt phẳng (Pm) thường có thêm các câu hỏi phụ: + Câu hỏi 1: Chứng minh rằng họ mặt phẳng (Pm) luôn đi qua một điểm cố định. + Câu hỏi 2: Cho điểm M có tính chất K, biện luận theo vị trí của M số mặt phẳng của họ (Pm) đi qua M. + Câu hỏi 3: Chứng minh rằng họ mặt phẳng (Pm) luôn chứa một đường thẳng cố định. Dạng 2 . Viết phương trình mặt phẳng Phương pháp : Để viết phương trình mặt phẳng (P) ta có thể lựa chọn một trong các cách sau: Cách 1: Thực hiện theo các bước: + Bước 1. Xác định điểm M0(x0; y0; z0) ∈ (P) và vectơ pháp tuyến (VTPT) n(n1; n2; n3) của (P). + Bước 2. Khi đó, phương trình mặt phẳng (P): n1(x − x0) + n2(y − y0) + n3(z − z0) = 0. Cách 2: Sử dụng phương pháp quỹ tích. [ads] Chú ý : Chúng ta có các kết quả: 1. Mặt phẳng (P) đi qua điểm M(x0; y0; z0), luôn có dạng: (P): A(x − x0) + B(y − y0) + C(z − z0) = 0. 2. Mặt phẳng (P) có vectơ pháp tuyến (VTPT) n(n1; n2; n3), luôn có dạng: (P): n1x + n2y + n3z + D = 0. Để xác định (P), ta cần đi xác định D. 3. Mặt phẳng (P) song song với (Q): Ax + By + Cz + D = 0, luôn có dạng (P): Ax + By + Cz + E = 0. Để xác định (P), ta cần đi xác định E. 4. Phương trình mặt phẳng theo các đoạn chắn, đó là mặt phẳng (P) đi qua ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) có phương trình (P): x/a + y/b + z/c = 1. 5. Với phương trình mặt phẳng (P) đi qua ba điểm không thẳng hàng M, N, P chúng ta có thể lựa chọn một trong hai cách sau: + Cách 1: Gọi n là vectơ pháp tuyến (VTPT) của mặt phẳng (P), ta có: n = [MN, MP]. Khi đó, phương trình mặt phẳng (P) đi qua M và có vectơ pháp tuyến (VTPT) là n. + Cách 2: Giả sử mặt phẳng (P) có phương trình: Ax + By + Cz + D = 0, (1) với A2 + B2 + C2 > 0. Vì M, N, P thuộc mặt phẳng (P) nên ta có hệ ba phương trình với bốn ẩn A, B, C, D. Biểu diễn ba ẩn theo một ẩn còn lại, rồi thay vào (1) chúng ta nhận được phương trình mặt phẳng (P). Dạng 3 . Vị trí tương đối của hai mặt phẳng Phương pháp : Sử dụng kiến thức trong phần vị trí tương đối của hai mặt phẳng. Dạng 4 . Vị trí tương đối của mặt cầu với mặt phẳng Phương pháp : Ta thực hiện theo các bước: Bước 1. Xác định tâm I và tính bán kính R của mặt cầu (S). Xác định d = d(I, (P)). Bước 2. So sánh d với R để đưa ra kết luận: + Nếu d > R ⇔ (P) ∩ (S) = ∅. + Nếu d = R ⇔ (P) tiếp xúc với (S) tại H. + Nếu d < R ⇔ (P) ∩ (S) = (C) là một đường tròn nằm trong mặt phẳng (P).
Bài giảng hệ tọa độ trong không gian - Nguyễn Bảo Vương
Tài liệu gồm 54 trang bao gồm tóm tắt lý thuyết cơ bản, công thức tính tọa độ, phân dạng toán, hướng dẫn giải và bài tập các chủ đề trong bài học hệ tọa độ trong không gian (Bài 1, Hình học 12 chương 3: Phương pháp tọa độ trong không gian), các bài tập trong tài liệu có đáp án và lời giải chi tiết. Tài liệu do thầy Nguyễn Bảo Vương biên soạn và giảng dạy. Các vấn đề hệ tọa độ trong không gian : Vấn đề 1. CÁC ĐỊNH TỌA ĐỘ CỦA ĐIỂM, TỌA ĐỘ VECTƠ Phương pháp : Sử dụng các kết quả trong phần: + Tọa độ của vectơ. + Tọa độ của điểm. + Liên hệ giữa tọa độ vectơ và tọa độ hai điểm mút. Vấn đề 2. PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Với phương trình cho dưới dạng chính tắc (S): (x − a)^2 + (y − b)^2 + (z − c)^2 = k, với k > 0 ta lần lượt có: + Bán kính bằng R = √k. + Tọa độ tâm I là nghiệm của hệ phương trình: x – a = 0, y – b = 0 và z – c = 0. Suy ra I(a; b; c). Với phương trình cho dưới dạng tổng quát ta thực hiện theo các bước: + B­ước 1: Chuyển phương trình ban đầu về dạng:(S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0. (1) + B­ước 2: Để (1) là phương trình mặt cầu điều kiện là: a2 + b2 + c2 − d > 0. + B­ước 3: Khi đó (S) có thuộc tính: Tâm I(a; b; c) và bán kính R = √(a2 + b2 + c2 − d). [ads] Vấn đề 3. VIẾT PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Gọi (S) là mặt cầu thoả mãn điều kiện đầu bài. Chúng ta lựa chọn phương trình dạng tổng quát hoặc dạng chính tắc. Khi đó: 1. Muốn có phương trình dạng chính tắc, ta lập hệ 4 phương trình với bốn ẩn a, b, c, R, điều kiện R > 0. Tuy nhiên, trong trường hợp này chúng ta thường chia nó thành hai phần, bao gồm: + Xác định bán kính R của mặt cầu. + Xác tâm I(a; b; c) của mặt cầu. Từ đó, chúng ta nhận được phương trình chính tắc của mặt cầu. 2. Muốn có phương trình dạng tổng quát, ta lập hệ 4 phương trình với bốn ẩn a, b, c, d, điều kiện a2 + b2 + c2 − d > 0. Chú ý : 1. Cần phải cân nhắc giả thiết của bài toán thật kỹ càng để lựa chọn dạng phương trình thích hợp. 2. Trong nhiều trường hợp đặc thù chúng ta còn sử dụng phương pháp quỹ tích để xác định phương trình mặt cầu.
Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 122 trang phân dạng và tuyển chọn các bài tập trắc nghiệm có đáp án chuyên đề phương pháp tọa độ trong không gian, tài liệu được biên soạn bởi thầy Nguyễn Vũ Minh. Nội dung tài liệu gồm 4 phần: + Phần 01: HỆ TỌA ĐỘ TRONG KHÔNG GIAN + Phần 02:VEC TƠ CÙNG PHƯƠNG – TÍCH CÓ HƯỚNG + Phần 03: MẶT CẦU + Phần 4: PHƯƠNG TRÌNH MẶT PHẲNG