Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 11 năm 2018 - 2019 sở GDĐT Bình Dương

Sáng thứ Sáu ngày 03 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi kiểm tra chất lượng môn Toán khối 11 hệ THPT cuối học kỳ 2 năm học 2018 – 2019. Đề thi học kỳ 2 Toán 11 năm 2018 – 2019 sở GD&ĐT Bình Dương có mã đề 241, đề được biên soạn theo dạng đề kết hợp giữa trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm 20 câu, chiếm 50% số điểm, phần tự luận gồm 4 câu, chiếm 50% số điểm, học sinh có 90 phút để hoàn thành bài thi HK2 Toán 11, đây là dạng đề Toán được nhiều trường THPT, sở GD&ĐT lựa chọn, bởi vừa phù hợp với xu hướng thi Toán trắc nghiệm hiện hành, vừa giữ lại những ưu điểm của phương pháp thi tự luận. [ads] Trích dẫn đề thi học kỳ 2 Toán 11 năm 2018 – 2019 sở GD&ĐT Bình Dương : + Cho hình chóp đều, chọn mệnh đề sai trong các mệnh đề sau: A. Chân đường cao của hình chóp đều kẻ từ đỉnh trùng với tâm của đa giác đáy đó. B. Đáy hình chóp đều là một đa giác đều. C. Các mặt bên của hình chóp đều là những tam giác cân. D. Tất cả những cạnh của hình chóp đều bằng nhau. + Trong không gian, ba vectơ a, b, c được gọi là đồng phẳng nếu và chỉ nếu: A. Chúng có giá cùng nằm trong một mặt phẳng. B. Một trong ba vectơ là vectơ không. C. Chúng có giá song song hoặc trùng nhau. D. Chúng có giá song song với một mặt phẳng nào đó. + Xét trong không gian, trong các mệnh đề sau đây, mệnh đề nào là đúng? A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. B. Một mặt phẳng (α) và một đường thẳng a cùng vuông góc với đường thẳng b thì (α) song song với a. C. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. D. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Quang Khải, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Tìm các đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến với đồ thị (C) của hàm số 3 y x x 3 tại điểm A. + Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B và BC a; SA vuông góc mặt phẳng ABC và SA a 3. a/ Chứng minh: BC SAB. b/ Gọi M là trung điểm của đoạn AC. Chứng minh rằng SBM SAC. c/ Tính góc giữa hai mặt phẳng SBC và SAC. d/ Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. SB ABCD và SD a AB a 3 BM vuông góc SC tại M. 1) Chứng minh rằng SAD SAB và tam giác SCD là tam giác vuông. 2) Chứng minh rằng AM là đường cao của tam giác SAC. 3) Tính góc giữa hai mặt phẳng (SAD) và (ABCD). + Viết phương trình tiếp tuyến của đồ thị biết tiếp tuyến song song với đường thẳng d y x 4 7. + Gọi 1 2 k k lần lượt là hệ số góc của các tiếp tuyến với đồ thị tại các điểm có hoành độ bằng 1 x và 2 x. Tìm m để 1 2 k k đạt giá trị lớn nhất biết rằng 1 2 x x là hai nghiệm của phương trình 2 2 2 1 0.