Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối kì 2 Toán 10 năm 2022 - 2023 trường THPT Hướng Hóa - Quảng Trị

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kì 2 môn Toán 10 năm học 2022 – 2023 trường THPT Hướng Hóa, tỉnh Quảng Trị (theo chương trình GDPT 2018); đề thi gồm 03 trang với 20 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài 90 phút. Trích dẫn Đề minh họa cuối kì 2 Toán 10 năm 2022 – 2023 trường THPT Hướng Hóa – Quảng Trị : + Cho tập A = {0; 1; 2; 3; 7; 8; 9}. Từ các chữ số trong tập A có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số khác nhau. + Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lý, 2 quyển sách Hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có ít nhất một quyển là Toán. + Một trường THPT của tỉnh Quảng Trị có 8 giáo viên Toán gồm có 3 nữ và 5 nam, giáo viên Vật lý thì có 4 giáo viên nam. Hỏi có bao nhiêu cách chọn ra một đoàn thanh tra công tác ôn thi THPT QG gồm 3 người có đủ 2 môn Toán và Vật lý và phải có giáo viên nam và giáo viên nữ trong đoàn?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 10 năm 2018 - 2019 trường THPT Nguyễn Hiền - Đà Nẵng
Sáng thứ Bảy ngày 04 tháng 05 năm 2019, trường Trung học Phổ thông Nguyễn Hiền, thành phố Đà Nẵng tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 10 năm học 2018 – 2019. Đề thi học kỳ 2 Toán 10 năm học 2018 – 2019 trường THPT Nguyễn Hiền – Đà Nẵng có mã đề T10-01 gồm 2 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 4/10 điểm, phần tự luận gồm 2 câu, chiếm 6/10 điểm, học sinh 90 phút (không kể thời gian phát đề) để hoàn thành bài thi học kỳ 2 Toán 10, đề thi có đáp án mã đề T01, T02, T03,  T04 phần trắc nghiệm và lời giải chi tiết phần tự luận. [ads] Trích dẫn đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Hiền – Đà Nẵng : + Trên mặt phẳng Oxy, cho tam giác ABC với A(2;1), B(3;-2), C(4;-2) và đường thẳng Δ: x – y – 2 = 0. Gọi G là trọng tâm của tam giác ABC. Câu 1. Tính khoảng cách từ điểm C đến đường thẳng Δ. Câu 2. Viết phương trình tham số của đường thẳng AB. Câu 3. Viết phương trình tổng quát của đường thẳng d đi qua G và song song với đường thẳng Δ. + Trên mặt phẳng Oxy, cho điểm M di động trên đường tròn lượng giác (tâm O) sao cho số đo cung AM = α với A(1;0) và 0 ≤ α ≤ π. Gọi a, b lần lượt là giá trị nhỏ nhất của sinα và cosα. Tính P = a + b. + Trên mặt phẳng Oxy, hình chữ nhật ABCD có đỉnh A(3;-1) và Δ1: x – 2y + 1 = 0, Δ2: 2x + y = 0 là hai trong bốn đường thẳng chứa bốn cạnh của hình chữ nhật đó. Diện tích của ABCD bằng?
Đề thi học kỳ 2 Toán 10 năm 2018 - 2019 trường Phan Đình Phùng - Hà Nội
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường Phan Đình Phùng – Hà Nội, đề thi có mã đề 004 gồm 3 trang, đề thi gồm 15 câu trắc nghiệm kết hợp với 3 câu tự luận, học sinh làm bài thi HK2 Toán 10 trong khoảng thời gian 90 phút. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường Phan Đình Phùng – Hà Nội : + Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0. a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến. b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ. c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M. [ads] + Cho nhị thức f(x) = ax + b (a, b thuộc R, a khác 0). Khẳng định nào sau đây đúng? A. Giá trị của f(x) cùng dấu với hệ số a khi x thuộc (-∞;-b/a). B. Giá trị của f(x) trái dấu với hệ số a khi x thuộc (-b/a;+∞). C. Giá trị của f(x) trái dấu với hệ số a khi x thuộc (-∞;-b/a). D. Giá trị của f(x) cùng dấu với hệ số a với mọi x. + Chiều cao của 40 học sinh lớp 10A của trường THPT Phan Đình Phùng – Hà Nội được cho trong bảng tần số. Chiều cao trung bình của 40 học sinh lớp 10A là?
Đề thi học kỳ 2 Toán 10 năm 2018 - 2019 sở GDĐT Bình Dương
Thứ Sáu ngày 03 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 2 năm học 2018 – 2019. Đề thi học kỳ 2 Toán 10 năm học 2018 – 2019 sở GD&ĐT Bình Dương mã đề 357, đề gồm 3 trang được biên soạn theo dạng đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 5 điểm, phần tự luận gồm 4 câu, chiếm 5 điểm, học sinh làm bài thi HK2 Toán 10 trong khoảng thời gian 90 phút (không tính thời gian giám thị coi thi phát đề). [ads] Trích dẫn đề thi học kỳ 2 Toán 10 năm 2018 – 2019 sở GD&ĐT Bình Dương : + Trong mặt phẳng Oxy, cho đường thẳng d có phương trình tham số x = 2 + 2t, y = 3 + t, t thuộc R. a/ Viết phương trình tổng quát đường thẳng d và tìm giao điểm đường thẳng d với trục hoành. b/ Viết phương trình đường tròn đi qua điểm M(0;1), bán kính R = 5, tâm I nằm trên đường thẳng d và có hoành độ dương. + Một cửa hàng có 6 nhân viên. Thu nhập của họ trong tháng 1 năm 2019 được cho trong bảng sau (đơn vị tính là triệu đồng): Người: A – B – C – D – E – F. Thu nhập: 5,6 – 7 – 6 – 12 – 15 – 12 (triệu đồng). Số trung vị là? + Tìm tất cả các giá trị m để phương trình sau có hai nghiệm trái dấu: (m^2 – 1)x^2 + (m + 3)x + m^2 + m = 0.
Đề thi học kì 2 Toán 10 năm 2018 - 2019 trường Phổ thông Năng khiếu - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối lớp 10 đề thi học kì 2 Toán 10 năm học 2018 – 2019 trường Phổ thông Năng khiếu, thành phố Hồ Chí Minh (PTNK – TP HCM), đề thi được biên soạn theo dạng đề tự luận với 06 bài toán, học sinh có 90 phút (không tính khoảng thời gian giám thị coi thi phát đề) để hoàn thành bài thi HK2 Toán 10, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2018 – 2019 trường Phổ thông Năng khiếu – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(3;1) và bán kính R = 5. a) Tìm tọa độ giao điểm của đường tròn (C) với trục Ox. b) Tính khoảng cách từ I đến đường thẳng AB, biết A(657;12), B(625;36). c) Viết phương trình tiếp tuyến với đường tròn (C) biết tiếp tuyến vuông góc với đường thẳng (d): 8x + 6y + 1 = 0. [ads] + Trong mặt phẳng tọa độ Oxy, cho Elip (E) : 9x^2 + 25y^2 = 225. a) Tính diện tích hình chữ nhật cơ sở của (E). b) Có bao nhiêu điểm M ∈ (E) thỏa 1/MF1 + 1/MF2 = 8/F1F2. + Tìm m để giá trị lớn nhất của hàm số y = x^2 − 4x + 2m − 3 trên [−1;3] bằng 7.