Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 7 - Nguyễn Chín Em

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tự học Toán 7 do thầy Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm 381 trang trình bày đầy đủ lý thuyết SGK, phân dạng toán và hướng dẫn giải các bài toán Đại số và Hình học lớp 7. Khái quát nội dung tài liệu tự học Toán 7 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . SỐ HỮU TỈ. SỐ THỰC. 1 TẬP HỢP R CÁC SỐ HỮU TỈ. + Dạng 1. Biểu diễn số hữu tỉ. + Dạng 2. So sánh hai số hữu tỉ. 2 CỘNG, TRỪ SỐ HỮU TỈ. + Dạng 1. Cộng, trừ số hữu tỉ. + Dạng 2. Mở đầu về phương trình. + Dạng 3. Biểu diễn một số hữu tỉ thành tổng hoặc hiệu của các số hữu tỉ khác. 3 NHÂN, CHIA SỐ HỮU TỈ. 4 GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TỈ. CỘNG, TRỪ, NHÂN, CHIA SỐ THẬP PHÂN. 5 LŨY THỪA CỦA MỘT SỐ HỮU TỈ. 6 TỈ LỆ THỨC. 7 SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. LÀM TRÒN SỐ. 8 SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI. CHƯƠNG 2 . HÀM SỐ VÀ ĐỒ THỊ. 1 ĐẠI LƯỢNG TỈ LỆ THUẬN. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ THUẬN. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ thuận để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ thuận. 2 ĐẠI LƯỢNG TỈ LỆ NGHỊCH. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ NGHỊCH. + Dạng 1. Sử dụng định nghĩa và tính chất của đại lượng tỉ lệ nghịch để giải toán. + Dạng 2. Một số bài toán về đại lượng tỉ lệ nghịch. 3 HÀM SỐ. 4 MẶT PHẲNG TỌA ĐỘ. 5 ĐỒ THỊ HÀM SỐ y = ax VỚI a ≠ 0. CHƯƠNG 3 . THỐNG KÊ. 1 THU THẬP SỐ LIỆU THỐNG KÊ. 2 BẢNG TẦN SỐ CÁC GIÁ TRỊ CỦA DẤU HIỆU. 3 BIỂU ĐỒ. 4 SỐ TRUNG BÌNH CỘNG. CHƯƠNG 4 . BIỂU THỨC ĐẠI SỐ. 1 KHÁI NIỆM VỀ BIỂU THỨC ĐẠI SỐ. 2 GIÁ TRỊ CỦA MỘT BIỂU THỨC ĐẠI SỐ. 3 ĐƠN THỨC. 4 ĐƠN THỨC ĐỒNG DẠNG. 5 ĐA THỨC. + Dạng 1. Nhận biết đa thức. + Dạng 2. Thu gọn đa thức. + Dạng 3. Tìm bậc của đa thức. 6 CỘNG TRỪ ĐA THỨC. + Dạng 1. Tính tổng, hiệu của hai đa thức. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức. + Dạng 3. Bài toán liên quan đến chia hết. 7 ĐA THỨC MỘT BIẾN. 8 CỘNG, TRỪ ĐA THỨC MỘT BIẾN. 9 NGHIỆM CỦA ĐA THỨC MỘT BIẾN. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . ĐƯỜNG THẲNG VUÔNG GÓCĐƯỜNG THẲNG SONG SONG. 1 HAI GÓC ĐỐI ĐỈNH. 2 HAI ĐƯỜNG THẲNG VUÔNG GÓC. 3 CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG. + Góc so le trong. Góc đồng vị. + Tính chất. 4 HAI ĐƯỜNG THẲNG SONG SONG. 5 TỪ VUÔNG GÓC ĐẾN SONG SONG. CHƯƠNG 2 . TAM GIÁC. 1 TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Giải bài toán định lượng. + Bài tập luyện tập. 2 HAI TAM GIÁC BẰNG NHAU. 3 HAI TAM GIÁC BẰNG NHAU CẠNH – CẠNH – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, BC = a, AC = b. 4 HAI TAM GIÁC BẰNG NHAU CẠNH – GÓC – CẠNH. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Vẽ tam giác ABC biết AB = c, AC = b và góc BAC = α. 5 HAI TAM GIÁC BẰNG NHAU GÓC – CẠNH – GÓC. + Dạng 1. Chứng minh hai tam giác bằng nhau. + Dạng 2. Sử dụng hai tam giác bằng nhau để giải toán. + Dạng 3. Vẽ tam giác ABC biết AB = c, A = α, B = β. 6 TAM GIÁC CÂN. + Dạng 1. Chứng minh tính chất của tam giác cân, tam giác đều. + Dạng 2. Chứng minh một tam giác là tam giác cân, tam giác đều. + Dạng 3. Sử dụng tam giác cân, tam giác đều để giải toán định lượng. + Dạng 4. Sử dụng tam giác cân giải bài toán định tính. 7 ĐỊNH LÍ PY – TA – GO. 8 CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. CHƯƠNG 3 . QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC.CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. 1 QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN TRONG MỘT TAM GIÁC. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa góc và cạnh đối diện trong một tam giác giải toán. 2 QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. + Dạng 1. Chứng minh các tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng. + Dạng 2. Sử dụng tính chất về mối quan hệ giữa các đường xiên và các hình chiếu của chúng giải toán. 3 QUAN HỆ GIỮA BA CẠNH CỦA MỘT TAM GIÁC – BẤT ĐẲNG THỨC TAM GIÁC. + Dạng 1. Chứng minh bất đẳng thức tam giác. + Dạng 2. Sử dụng bất đẳng thức tam giác để giải toán. 4 TÍNH CHẤT BA ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC. + Dạng 1. Tính độ dài đoạn thẳng. + Dạng 2. Chứng minh tính chất hình học. 5 TÍNH CHẤT TIA PHÂN GIÁC CỦA MỘT GÓC. + Dạng 1. Chứng minh tính chất tia phân giác của một góc. + Dạng 2. Chứng minh một tia là tia phân giác của một góc. + Dạng 3. Dựng tia phân giác của một góc. + Dạng 4. Sử dụng tính chất tia phân giác của một góc để giải toán. 6 TÍNH CHẤT BA ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC. 7 TÍNH CHẤT ĐƯỜNG TRUNG TRỰC CỦA MỘT ĐOẠN THẲNG. + Dạng 1. Chứng minh tính chất đường trung trực. + Dạng 2. Sử dụng tính chất đường trung trực để giải toán. 8 TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC. + Dạng 1. Chứng minh tính chất ba đường trung trực của tam giác. + Dạng 2. Sử dụng tính chất của ba đường trung trực của tam giác để giải toán. 9 TÍNH CHẤT BA ĐƯỜNG CAO CỦA TAM GIÁC.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính chất tia phân giác của một góc
Nội dung Chuyên đề tính chất tia phân giác của một góc Bản PDF - Nội dung bài viết Tài liệu chuyên đề: Tính chất tia phân giác của một góc Tài liệu chuyên đề: Tính chất tia phân giác của một góc
Chuyên đề tính chất ba đường trung tuyến của tam giác
Nội dung Chuyên đề tính chất ba đường trung tuyến của tam giác Bản PDF - Nội dung bài viết Tài liệu học tập về tính chất ba đường trung tuyến của tam giácI. LÝ THUYẾT TRỌNG TÂMII. CÁC DẠNG BÀI TẬPDạng 1: Sử dụng tính chất trọng tâm tam giácDạng 2: Chứng minh một điểm là trọng tâm tam giácDạng 3: Đường trung tuyến của tam giác cân, tam giác đều, tam giác vuông Tài liệu học tập về tính chất ba đường trung tuyến của tam giác Tài liệu này bao gồm 11 trang, cung cấp lý thuyết về trọng tâm, các dạng toán và bài tập liên quan đến tính chất ba đường trung tuyến của tam giác. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh lớp 7 trong quá trình học tập chương trình Toán lớp 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu học tập của tài liệu bao gồm: Kiến thức: Phát biểu được định nghĩa đường trung tuyến của tam giác và tính chất ba đường trung tuyến của tam giác. Kĩ năng: Vẽ được các đường trung tuyến của tam giác và áp dụng các định nghĩa và tính chất về đường trung tuyến. I. LÝ THUYẾT TRỌNG TÂM Trong phần này, bạn sẽ được giới thiệu về khái niệm trọng tâm của tam giác và cách tính toán liên quan đến trọng tâm. II. CÁC DẠNG BÀI TẬP Dạng 1: Sử dụng tính chất trọng tâm tam giác Trong dạng này, bạn sẽ học cách xác định trọng tâm và sử dụng tính chất của ba đường trung tuyến của tam giác để giải bài tập. Dạng 2: Chứng minh một điểm là trọng tâm tam giác Bằng cách sử dụng tính chất của trọng tâm, bạn sẽ được hướng dẫn cách chứng minh một điểm là trọng tâm của tam giác. Dạng 3: Đường trung tuyến của tam giác cân, tam giác đều, tam giác vuông Trong dạng này, bạn sẽ được hướng dẫn về tính chất đặc biệt của tam giác cân, tam giác đều và tam giác vuông, và cách xác định đường trung tuyến trong các trường hợp này. Với tài liệu này, bạn sẽ nắm vững kiến thức cơ bản về tam giác và tính chất của ba đường trung tuyến, giúp bạn nâng cao kiến thức và kỹ năng trong môn Toán.
Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác
Nội dung Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giácI. LÝ THUYẾT TRỌNG TÂMII. CÁC DẠNG BÀI TẬPDạng 1: Sử dụng điều kiện tồn tại tam giác dựa vào độ dài ba cạnhDạng 2: Chứng minh các bất đẳng thức về độ dài Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Chuyên đề này bao gồm 08 trang tài liệu, cung cấp kiến thức về lý thuyết trọng tâm, các dạng toán và bài tập liên quan đến quan hệ giữa ba cạnh của tam giác và bất đẳng thức tam giác. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh lớp 7 hiểu rõ hơn về chương trình Toán lớp 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác và các đường đồng quy trong tam giác. Mục tiêu của chuyên đề là: Kiến thức: Phát biểu được định lí và hệ quả của bất đẳng thức tam giác. Kỹ năng: Vận dụng được định lí và hệ quả của bất đẳng thức tam giác trong các bài toán. I. LÝ THUYẾT TRỌNG TÂM Trong phần này, chúng ta sẽ tìm hiểu về trọng tâm của tam giác và vai trò của nó trong quan hệ giữa ba cạnh của tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1: Sử dụng điều kiện tồn tại tam giác dựa vào độ dài ba cạnh Để xác định tam giác có tồn tại hay không, chúng ta cần áp dụng bất đẳng thức tam giác và xét các trường hợp khác nhau. Dạng 2: Chứng minh các bất đẳng thức về độ dài Trong dạng này, chúng ta sẽ sử dụng bất đẳng thức tam giác và thực hiện các biến đổi phù hợp để chứng minh các bất đẳng thức liên quan đến độ dài các cạnh của tam giác. Chúc các bạn học sinh lớp 7 học tập hiệu quả và thành công trong việc giải các bài toán liên quan đến quan hệ giữa ba cạnh của tam giác và bất đẳng thức tam giác!
Chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Nội dung Chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Bản PDF - Nội dung bài viết Chuyên đề Quan Hệ giữa Đường Vuông Góc và Đường Xiên, Đường Xiên và Hình Chiếu Chuyên đề Quan Hệ giữa Đường Vuông Góc và Đường Xiên, Đường Xiên và Hình Chiếu Trong tài liệu này, chúng ta sẽ tìm hiểu về quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu. Đầu tiên, chúng ta sẽ được học về lý thuyết trọng tâm, để hiểu rõ về các khái niệm cơ bản như đường vuông góc, đường xiên, hình chiếu. Sau đó, chúng ta sẽ tiếp cận với các dạng bài tập thực hành. Đầu tiên là dạng bài tập so sánh hai đường xiên hoặc hai hình chiếu. Chúng ta sẽ áp dụng định lí để so sánh và xác định đường xiên nào lớn hơn, hình chiếu nào lớn hơn. Đặc biệt, chúng ta cũng sẽ tìm hiểu về quan hệ giữa đường vuông góc và đường xiên. Sử dụng định lí "Đường vuông góc ngắn hơn mọi đường xiên", chúng ta sẽ biết cách áp dụng để giải các bài tập liên quan đến quan hệ này. Với mục tiêu giúp học sinh lớp 7 hiểu rõ hơn về chương trình Toán lớp 7 phần Hình học, tài liệu này sẽ hỗ trợ các em phát triển kiến thức và kỹ năng cần thiết để giải quyết các bài tập phức tạp về quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu.