Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số chuyên đề về tổ hợp dành cho học sinh giỏi Toán

Tài liệu gồm 67 trang cung cấp thêm kiến thức chuyên sâu về tổ hợp cho học sinh phổ thông, đặc biệt là dành cho những em học sinh có năng khiếu môn toán. Trong tài liệu này, học sinh được tìm hiểu 10 chuyên đề: Chuyên đề 1 : Quy tắc cộng và quy tắc nhân. Mục đích của chuyên đề là dùng hai quy tắc đếm cơ bản tìm hiểu một số tính chất về số palindrome, chuỗi nhị phân, hàm lôgic tự đối ngẫu; từ đó dùng làm cơ sở để giải một số bài toán tổ hợp khác trong các chuyên đề tiếp theo. Chuyên đề 2 : Hoán vị và tổ hợp. Thiết lập song ánh để giải một số bài toán tổ hợp là chủ đề đầu tiên tác giả luận văn đưa ra trong vấn đề này. Tiếp đến là một số bài toán về hoán vị vòng quanh. Chủ đề thứ ba đề cập đến đó là phương pháp chứng minh bằng lý luận tổ hợp. Các em có thể áp dụng phương pháp này vào chứng minh một số công thức tổ hợp mà không phải dùng nhiều đến các công thức tính toán. Chuyên đề 3 : Nguyên lý chuông chim bồ câu. Chuyên đề 4 : Các số Ramsey. Có thể khẳng định rằng trong 6 người bất kỳ luôn tìm được 3 người sao cho hoặc họ quen nhau từng đôi một hoặc họ không quen nhau từng đôi một hay không? Đây là một bài toán đố đã xuất hiện từ lâu và đã từng được coi là một bài toán tồn tại trong lý thuyết tổ hợp. Lời giải của nó là một trường hợp riêng của định lý đã được Ramsey chứng minh vào năm 1928. Định lý này có nhiều mở rộng sâu sắc và quan trọng không những chỉ trong lý thuyết tổ hợp và đồ thị mà còn trong các lĩnh vực khác như Giải tích, Đại số và Hình học. Chuyên đề 5 : Các số Catalan. [ads] Chuyên đề 6 : Các số Stirling. Trong trường hợp này chúng ta làm quen với số Stirling loại 1, số Stirling loại 2. Nêu được vai trò của số Stirling trong các bài toán về sự phân chia một tập hợp cho trước thành hợp của các tập con. Chuyên đề 7 : Hoán vị và tổ hợp tổng quát. Hoán vị tổng quát thường áp dụng vào bài toán sắp xếp các vật trong đó có thể có sự lặp lại. Còn tổ hợp tổng quát là công cụ mạnh trong bài toán về sự phân phối các vật vào các “hộp” mà số lượng vật trong mỗi “hộp” có thể qui định trước. Chuyên đề 8 : Nguyên lý bao hàm và loại trừ. Nguyên lý bao hàm và loại trừ có ứng dụng nhiều trong chứng minh các công thức của tổ hợp, đại số. Ngoài ra ta thường dùng nguyên lý này trong các bài toán định lượng. Chuyên đề 9 : Những sự xáo trộn và những sự sắp đặt trước. Chuyên đề 10 : Đại lượng bất biến. Đại lượng bất biến là một tính chất của bài toán không thay đổi qua sự tác động biến đổi của hệ thống. Nhiều bài toán nhờ phát hiện ra hoặc cố tình tạo ra những biến có tính chất bất biến hoặc đơn điệu bất biến từ đó đưa ta đến kết luận của bài toán.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề nhị thức Niu-tơn
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề nhị thức Niu-tơn, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Công thức nhị thức Niu-tơn. 2. Một số kết quả quan trọng. 3) Chú ý. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 . Tìm hệ số, số hạng trong khai triển không có điều kiện. + Bước 1: Viết khai triển dạng tổng quát. + Bước 2: Dựa vào giả thiết yêu cầu tìm hệ số của m x giải phương trình m f k k. + Bước 3: Thay vào biểu thức của T và kết luận. Dạng 2 . Tìm hệ số, số hạng trong khai triển có điều kiện. + Bước 1: Tìm n dựa vào điều kiện đề bài cho. + Bước 2: Quy về dạng 1 đã biết. Dạng 3 . Tìm hệ số, số hạng trong khai triển nhiều hạng tử. + Bước 1: Viết khai triển thu gọn về 2 hạng tử. + Bước 2: Dựa vào chỉ số mũ của x để biện luận tìm i và k. + Bước 3: Kết luận về hệ số của số hạng cần tìm.
Các dạng bài toán đếm
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề các dạng bài toán đếm, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. DẠNG 1 : BÀI TOÁN ĐẾM SỐ CÓ YẾU TỐ CHIA HẾT. Một số dấu hiệu chia hết cần lưu ý: + Số n chia hết cho 2 khi chữ số tận cùng của nó là 0, 2, 4, 6, 8. Ví dụ: 24; 508 …. + Số n chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3. Ví dụ: 126; 540 …. + Số n chia hết cho 4 khi 2 chữ số tận cùng của nó phải chia hết cho 4. Ví dụ: 116; 544 …. + Số n chia hết cho 5 khi chữ số tận cùng của nó là 0 hoặc 5. Ví dụ: 80, 205 …. + Số n chia hết cho 6 khi nó đồng thời chia hết cho 2 và 3. + Số n chia hết cho 8 khi 3 chữ số cuối cùng của nó phải chia hết cho 8. + Số n chia hết cho 9 khi tổng các chữ số của nó chia hết cho 9. + Số n chia hết cho 10 khi chữ số tận cùng của nó là 0. + Số n chia hết cho 12 khi nó đồng thời chia hết cho 3 và 4. + Số n chia hết cho 15 khi nó đồng thời chia hết cho 3 và 5. + Số n chia hết cho 20 khi hai chữ số tận cùng của nó là 00; 20; 40; 60 và 80 + Số n chia hết cho 25 khi hai chữ số tận cùng của nó là 25; 50; 75; và 00. DẠNG 2 : BÀI TOÁN ĐẾM SỐ CÓ RÀNG BUỘC LỚN BÉ, SỐ LẦN XUẤT HIỆN CHỮ SỐ. DẠNG 3 : BÀI TOÁN CHỌN NGƯỜI VÀ ĐỒ VẬT. DẠNG 4 : BÀI TOÁN ĐẾM CÓ YẾU TỐ HÌNH HỌC. Một số kết quả quan trọng cần lưu ý: 1. Với n điểm cho trước trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng được tạo ra là 2Cn, số véc tơ có điểm đầu và điểm cuối lấy từ n đỉnh là 2An. 2. Cho đa giác lồi n cạnh, số đường chéo của đa giác là 2 C n n. 3. Cho đa giác lồi n cạnh, xét các tam giác có 3 đỉnh là 3 đỉnh của đa giác, khi đó: Số tam giác có đúng 1 cạnh chung với đa giác là n n 4; Số tam giác có đúng 2 cạnh chung với đa giác là n; Số tam giác không có cạnh chung với đa giác là 3 4 C n n n n. 4. Cho đa giác đều có 2n cạnh, số các tam giác vuông có 3 đỉnh là các đỉnh của đa giác n n 2 2. 5. Cho đa giác đều có n cạnh, số tam giác nhọn được tạo thành từ 3 trong n đỉnh của đa giác là 3 Cn (số tam giác tù + số tam giác vuông). 6. Cho đa giác đều có n cạnh, số tam giác tù có 3 đỉnh là các đỉnh của đa giác được tính bởi công thức: Nếu n chẵn 2 2 2 n n C; Nếu n lẻ 2 1 2 n n C. 7. Cho đa giác lồi n cạnh, xét các tứ giác có 4 đỉnh là các đỉnh của đa giác, khi đó: Số tứ giác có đúng 1 cạnh chung với đa giác là 2 4 5 n n C n A; Số tứ giác có đúng 2 cạnh chung với đa giác là 5 5 2 n n n n B; Số tứ giác có đúng 3 cạnh chung với đa giác là n C; Số tứ giác không có cạnh chung với đa giác là 4 C A B C n. 8. Cho đa giác đều có 2n đỉnh. Số tứ giác có 4 đỉnh là 4 đỉnh của đa giác và tạo thành HÌNH CHỮ NHẬT là 2 Cn. 9. Cho đa giác đều có 4n đỉnh. Số tứ giác có 4 đỉnh là 4 đỉnh của đa giác và tạo thành HÌNH VUÔNG là n.
Tài liệu chủ đề hoán vị - chỉnh hợp - tổ hợp
Tài liệu gồm 32 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hoán vị – chỉnh hợp – tổ hợp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Hoán vị. + Hoán vị không lặp. + Hoán vị lặp. + Hoán vị vòng quanh. 2) Chỉnh hợp. + Chỉnh hợp không lặp. + Chỉnh hợp lặp. 3) Tổ hợp. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1. Hoán vị. Dạng 2. Chỉnh hợp. Dạng 3. Tổ hợp. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề quy tắc cộng và quy tắc nhân
Tài liệu gồm 23 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề quy tắc cộng và quy tắc nhân, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1. Quy tắc cộng: Một công việc T được hoàn thành bởi cách thức khác nhau. – Cách thức 1 có m cách hoàn thành. – Cách thức 2 có n cách hoàn thành (không trùng lặp với cách nào ở trên). – Cách thức 3 có p cách hoàn thành (không trùng lặp với cách nào ở trên). … Khi đó để hoàn thành công việc T sẽ có m + n + p cách. Đây được gọi là Quy Tắc Cộng. 2. Quy tắc nhân: Một công việc T được hoàn thành bởi nhiều công đoạn liên tiếp. – Công đoạn 1 có m1 cách hoàn thành. – Công đoạn 2 có m2 cách hoàn thành. – Công đoạn 3 có m3 cách hoàn thành. … Khi đó để hoàn thành công việc T sẽ có 1 2 3 m m m cách. Đây được gọi là Quy Tắc Nhân. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.