Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán tương giao trong không gian Oxyz

Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Lê Thảo (THPT Nguyễn Thị Minh Khai, thành phố Hà Nội) và thầy giáo Bùi Sỹ Khanh (THPT Trần Cao Vân, thành phố Hồ Chí Minh), hướng dẫn phương pháp giải bài toán tương giao trong không gian Oxyz – một dạng toán vận dụng – vận dụng cao (VD – VDC) thường xuất hiện trong các đề thi thử tốt nghiệp THPT môn Toán. I. NHẮC LẠI LÝ THUYẾT 1. Tương giao giữa mặt cầu và mặt phẳng. Trong không gian Oxyz, cho mặt phẳng P By C D Ax z 0 và mặt cầu 2 2 2 2 S x a y b z c R có tâm I a b c và bán kính R khi đó: – Nếu d I P R thì mặt cầu S và P không có điểm chung. – Nếu d I P R thì mặt cầu S và P có điểm chung duy nhất là H (mặt phẳng tiếp xúc với mặt cầu tại H) và IH P. – Nếu d I P R thì mặt cầu S và cắt mặt phẳng P theo giao tuyến là đường tròn tâm H bán kính r ta có: + Gọi H là hình chiếu vuông góc của I lên P và 2 2 2 I P r IH R d IH. + Cho điểm M nằm trong mặt cầu S mặt phẳng P đi qua M cắt S theo giao tuyến là đường tròn có bán kính r nhỏ nhất IM P. + Cho điểm M nằm trong mặt cầu S mặt phẳng P đi qua M cắt S theo giao tuyến là đường tròn có bán kính r lớn nhất P đi qua 2 điểm I và M. 2. Tương giao giữa mặt cầu và đường thẳng. Trong không gian Oxyz, đường thẳng và mặt cầu S có tâm I và bán kính R khi đó: – Nếu d I R thì mặt cầu S và không có điểm chung. – Nếu d I R thì mặt cầu S và có điểm chung duy nhất là H khi đó IH. – Nếu d I R thì mặt cầu S và cắt đường thẳng tại hai điểm A B ta có một số kết quả sau: + Gọi H là trung điểm AB IH và 2 2 2 4 I I AB d R d IH. + Cho điểm M khi đó đường thẳng đi qua M cắt S tại hai điểm A B sao cho độ dài AB lớn nhất là đường thẳng đi qua 2 điểm M và I. + Cho điểm M nằm trong mặt cầu S đường thẳng đi qua M cắt S tại hai điểm A B sao cho độ dài AB nhỏ nhất là đường thẳng đi qua M và vuông góc IM. II. MỘT SỐ VÍ DỤ MINH HỌA III. BÀI TẬP RÈN LUYỆN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm vị trí tương đối, góc và khoảng cách
Tài liệu gồm 34 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vị trí tương đối, góc và khoảng cách, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. VẤN ĐỀ 1. VỊ TRÍ TƯƠNG ĐỐI. 1. Vị trí tương đối của hai mặt phẳng. 2. Vị trí tương đối của đường thẳng và mặt phẳng. 3. Vị trí tương đối của hai đường thẳng. VẤN ĐỀ 2. BÀI TOÁN VỀ GÓC. 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng. 3. Góc giữa đường thẳng và mặt phẳng. VẤN ĐỀ 3. BÀI TOÁN VỀ KHOẢNG CÁCH. 1. Khoảng cách từ một điểm đến một mặt phẳng. 2. Khoảng cách giữa hai mặt phẳng song song. 3. Khoảng cách từ điểm đến đường thẳng. 4. Khoảng cách giữa hai đường thẳng chéo nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích có hướng của hai vectơ và ứng dụng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích có hướng của hai vectơ và ứng dụng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. 1. Công thức định thức. 2. Định nghĩa tích có hướng của hai vectơ. 3. Tính chất. 4. Ứng dụng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tọa độ của điểm và véctơ
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tọa độ của điểm và véctơ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. Hệ trục tọa độ trong không gian. II. Tọa độ vectơ. III. Tọa độ của điểm. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn cảnh hình học giải tích không gian trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 27 trang, tuyển chọn 274 câu hỏi và bài tập trắc nghiệm chuyên đề hình học giải tích trong không gian có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020