Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội

Nội dung Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội SYTU xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên năm 2023 lần 2 môn Toán chung trường THPT chuyên Đại học Sư phạm Hà Nội. Đề thi bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Câu 1: Một hội trường có 374 ghế, được xếp thành nhiều dãy, số ghế ở mỗi dãy bằng nhau và không vượt quá 30. Hãy tìm số dãy ghế của hội trường biết rằng: nếu kê mỗi dãy thêm 2 ghế và bổ sung thêm 1 dãy ghế (số ghế ở mỗi dãy vẫn bằng nhau) thì tổng số ghế là 432. Câu 2: Tìm tất cả các giá trị của m để đồ thị hàm số y = (m − 1)x + 2m + 3 cắt hai trục tọa độ Ox, Oy tương ứng tại hai điểm A, B phân biệt sao cho tam giác OAB có diện tích bằng 4. Câu 3: Cho đường tròn (O) có đường kính AB và M là một điểm nằm trên (O) (M khác A và B). Trong nửa mặt phẳng chứa M, có bờ là đường thẳng AB vẽ các tia Ax, By vuông góc với AB. Tiếp tuyến tại M của (O) cắt các tia Ax, By lần lượt tại C, D. Chứng minh rằng đường thẳng AB là tiếp tuyến của đường tròn đường kính CD. Vẽ đường tròn (I) qua M, tiếp xúc với Ax tại C. Tia OC cắt đường tròn (I) tại điểm thứ hai J. Chứng minh rằng J là trung điểm của OC. Gọi E là trung điểm của OA. Chứng minh rằng đường thẳng qua E và vuông góc với BC cắt OM tại một điểm thuộc đường tròn (I). Mọi thông tin chi tiết và lời giải đều được cung cấp trong đề thi. Chúc quý thầy cô và các em học sinh làm bài tốt!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Gọi E là điểm đối xứng của B qua AC và F điểm đối xứng của C qua AB. Đường thẳng BE cắt đường thẳng CF tại H. a) Chứng minh các tứ giác AHBF và AHCE là tứ giác nội tiếp. b) Đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại điểm thứ hai là D. Chứng minh F, B, D thẳng hàng và DA là tia phân giác của góc EDF. c) Gọi P, Q lần lượt là tâm đường tròn ngoại tiếp các tam giác ABE, ACF. Chứng minh sáu điểm B, C, D, O, P, Q cùng thuộc một đường tròn tâm I và giao điểm (khác D) của đường thẳng AD với đường tròn (I) là trực tâm tam giác APQ. d) Giả sử H thuộc đường tròn (I). Chứng minh các đường thẳng AI, DH, BC, PQ đồng quy. + Cho p là một số nguyên tố. a) Chứng minh nếu p lẻ và tồn tại số nguyên x sao cho (x + 1) chia hết cho p thì (p – 1) chia hết cho 4. Chứng minh 2023p + 23^p – 24 không là số chính phương. + Người ta tô màu mỗi điểm trên mặt phẳng bởi một trong hai màu đỏ hoặc xanh. Chứng minh: a) Tồn tại một tam giác vuông cân có ba đỉnh được tô cùng màu. b) Tồn tại một tam giác vuông có cạnh huyền bằng 2, một cạnh góc vuông bằng 1 và ba đỉnh được tô cùng màu.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Cho parabol (P): y = 2×2 và đường thẳng (d): y = (7 – m)x + 3m – 3. Tìm các giá trị nguyên âm của m để (P) cắt (d) tại hai điểm phân biệt có hoành độ nhỏ hơn 4. + Cho đường tròn (O) đường kính AB. Trên (O) lấy hai điểm C, D nằm khác phía đối với AB và CD không đi qua O. Gọi E là giao điểm của AC và BD, F là giao điểm của AD và BC, I là trung điểm đoạn thẳng EF. Chứng minh IC là tiếp tuyến của (O). + Cho đường tròn (O) và điểm M nằm ngoài (O), vẽ tiếp tuyến MA và cát tuyến MBC không đi qua O (MB < MC). Gọi H là hình chiếu vuông góc của A trên MO. a) Chứng minh: Tứ giác BHOC nội tiếp. b) Vẽ đường thẳng qua B song song với AC cắt các đường thẳng MA, AH lần lượt tại K, I. Chứng minh KB = BI.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào 03/06/2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Lào Cai : + Một cửa hàng nhập 10 sản phẩm gồm hai loại A và B về bán. Biết mỗi sản phẩm loại A nặng 9kg, mỗi sản phẩm loại B nặng 10kg và tổng khối lượng của tất cả các sản phẩm là 95kg. Hỏi cửa hàng đã nhập bao nhiêu sản phẩm mỗi loại? + Cho tam giác ABC vuông ở A, có đường cao AH. Biết góc ABC = 60°, độ dài BC = 40cm. a) Tính độ dài cạnh AB. b) Gọi điểm K thuộc đoạn thẳng AC sao cho HK vuông góc với AC. Tính độ dài đoạn HK. + Cho tam giác ABC có ba góc nhọn (BA < BC) và nội tiếp đường tròn tâm O. Hai tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại I. Tia BI cắt đường tròn (O) tại điểm thứ hai là D. a) Chứng minh rằng tứ giác OAIC nội tiếp. b) Chứng minh IC2 = IB.ID. c) Gọi M là trung điểm của BD. Tia CM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh rằng: MO vuông góc AE.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thừa Thiên Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 03/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thừa Thiên Huế : + Một người đi xe đạp với vận tốc không đổi từ A đến B cách nhau 36 km. Trên cùng tuyến đường đó, khi đi từ B trở về A, người này đi với vận tốc lớn hơn 3 km/h so với vận tốc khi đi từ A đến B vì vậy thời gian về ít hơn thời gian đi là 36 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho tam giác ABC có ba góc nhọn, AB > AC và nội tiếp đường tròn (O). Tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại D. Gọi E là hình chiếu vuông góc của O trên đường thẳng BC. a) Chứng minh AOED là tứ giác nội tiếp. b) Đường tròn ngoại tiếp tứ giác AOED cắt đường tròn (O) tại điểm thứ hai là F (F không trùng với A). Chứng minh DF là tiếp tuyến của đường tròn (O) và AB FB AC FC. c) Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại G. Chứng minh ba điểm A, F, G thẳng hàng. + Cho tam giác OBC vuông tại O. Nếu quay tam giác OBC một vòng quanh cạnh OB cố định thì được một hình nón có thể tích bằng 800pi cm3. Nếu quay tam giác OBC một vòng quanh cạnh OC cố định thì được một hình nón có thể tích bằng 1920pi cm3. Tính OB và OC.