Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2022 môn Toán lần 2 trường Lương Thế Vinh - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử THPT Quốc gia năm học 2021 – 2022 môn Toán lần 2 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội. Trích dẫn đề thi thử THPT Quốc gia 2022 môn Toán lần 2 trường Lương Thế Vinh – Hà Nội : + Cho mặt cầu (S) có phương trình (x – 1)2 + (y – 2)2 + (z – 2)2 = 25 và mặt phẳng (P): x + 2y + 2z + 6 = 0. Một hình nón tròn xoay có đáy nằm trên (P), có chiều cao h = 15, có bán kính đáy bằng 5. Hình cầu và hình nón nằm về một phía đối với mặt phẳng (P). Người ta cắt hai hình đó bởi mặt phẳng (Q) có phương trình x + 2y + 2z + d = 0 (0 < d < 21) thu được hai thiết diện có tổng diện tích là S. Biết rằng S đạt giá trị lớn nhất khi d = a/b với a, b thuộc Z+ (phân số tối giản). Tính giá trị T = a + b. + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong ở hình bên dưới. Gọi x1, x2 lần lượt là hai điểm cực trị thỏa mãn x2 = x1 + 2 và f(x1) – 4f(x2) = 0. Đường thẳng song song với trục Ox và qua điểm cực tiểu cắt đồ thị hàm số tại điểm thứ hai có hoành độ x0 và x1 = x0 + 1. Tính tỉ số S1/S2 (S1 và S2 lần lượt là diện tích hai hình phẳng được gạch ở hình bên dưới). + Cho hình chóp S.ABC có A’, B’ lần lượt là trung điểm của SA, SB. Mặt phẳng (CA’B’) chia khối chóp S.ABC thành hai khối đa diện có thể tích lần lượt là V1, V2 (V1 > V2). Tỷ số V1/V2 gần với số nào nhất?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm thi đua số 1 - Ninh Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm thi đua số 1, tỉnh Ninh Thuận; đề thi có đáp án mã đề 152. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán cụm thi đua số 1 – Ninh Thuận : + Trong không gian Oxyz, cho mặt cầu 2 22 Sx y z x y z 2 2 2 20. Gọi N là hình nón có thể tích lớn nhất nội tiếp trong mặt cầu S và T là hình trụ có diện tích xung quanh lớn nhất nội tiếp bên trong hình nón (tham khảo hình vẽ). Khi đó, điểm nào dưới đây có thể thuộc đường tròn đáy của hình trụ? + Cho khối nón đỉnh S có đường kính đáy là 2 3. Gọi O là tâm đường tròn đáy. Một mặt phẳng P đi qua đỉnh S và cắt hình tròn đáy theo một dây AB có độ dài bằng 6, biết rằng khi đó thể tích của tứ diện SOAB bằng 1. Tính diện tích tam giác SAB. + Trong không gian Oxyz, cho mặt cầu S tâm I 1 0 2 bán kính R 1. Khẳng định nào sau đây đúng? A. Mặt phẳng Oyz tiếp xúc với mặt cầu S. B. Mặt phẳng Oyz cắt mặt cầu S. C. Mặt phẳng Oxy tiếp xúc với mặt cầu S. D. Mặt phẳng Oxz tiếp xúc với mặt cầu S.
Đề thi thử TN THPT 2022 - 2023 môn Toán sở GDĐT Hà Tĩnh (online lần 2)
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm học 2022 – 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Hà Tĩnh lần thứ hai, kỳ thi được diễn ra theo hình thức thi trực tuyến (online) trên máy tính, điện thoại; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử TN THPT 2022 – 2023 môn Toán sở GD&ĐT Hà Tĩnh (online lần 2) : + Cho phương trình 2 2 z mz m 3 0 với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho phương trình đã cho có hai nghiệm phức có điểm biểu diễn là A, B và tam giác OAB có diện tích bằng 6. Tổng bình phương các phần tử của S bằng? + Trong không gian Oxyz, cho tam giác ABC có A(6;0;0), B(6;8;0), C(0;8;0). Gọi mặt phẳng α đi qua B và vuông góc với AC. Điểm M thay đổi thoả mãn ABM AMC 90°. Gọi N là giao điểm của AM và α. Khoảng cách từ N đến ABC có giá trị lớn nhất bằng? + Cho khối trụ T có bán kính đáy bằng 2 3a. Gọi A và B là hai điểm thuộc hai đường tròn đáy của T sao cho khoảng cách và góc giữa AB và trục của T bằng 2a và 60°. Thể tích của khối trụ đã cho bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Bình Sơn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán trường THPT Bình Sơn, tỉnh Quảng Ngãi (mã đề 002); đề thi có hướng dẫn giải các bài toán vận dụng và vận dụng cao. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Bình Sơn – Quảng Ngãi : + Cho hình trụ có bán kính đáy R = 8 và chiều cao h = 10. Cắt hình trụ đã cho bởi mặt phẳng song song với trục và cách trục một khoảng bằng 2, thiết diện thu được là hình chữ nhật ABCD. Gọi I là tâm hình chữ nhật ABCD, đường thẳng qua I và vuông góc với (ABCD) cắt mặt trụ tại điểm S (với SI > 8). Gọi (N) là khối nón có đỉnh S và có đường tròn đáy ngoại tiếp hình chữ nhật ABCD. Tính thể tích của khối nón (N). + Trong không gian Oxyz, cho hai điểm A(1;-2;-4) và điểm B(−3;1;2). Xét hai điểm M và N thay đổi thuộc mặt phẳng (Oxy) sao cho diện tích hình tròn đường kính MN có diện tích bằng 9 4 π. Giá trị lớn nhất của AM BN bằng? + Cho hàm số f x có đạo hàm trên [0;+∞) thỏa mãn f (0 1) fx x 0 0 và 1 0 2 1 x fx. Diện tích hình phẳng giới hạn bởi các đường y fx 2 y fx và đường thẳng x = 4 bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán đợt 2 sở GDĐT Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán đợt 2 sở Giáo dục và Đào tạo tỉnh Thái Nguyên; đề thi có đáp án tất cả các mã đề và hướng dẫn giải chi tiết các câu vận dụng – vận dụng cao (từ câu 36 đến câu 50). Trích dẫn đề thi thử tốt nghiệp THPT 2023 môn Toán đợt 2 sở GD&ĐT Thái Nguyên : + Người ta muốn làm giá đỡ cho quả cầu bằng ngọc có bán kính r cm 25 sao cho phần quả cầu bị khuất chiếm 1 5 quả cầu theo chiều cao của nó. Biết giá đỡ hình trụ và rỗng phía trong, bán kính đường tròn đáy của hình trụ bên trong của giá đỡ bằng? + Cho hàm số 2 y x có đồ thị (C), biết rằng tồn tại hai điểm A B thuộc đồ thị (C) sao cho tiếp tuyến tại A B và hai đường thẳng lần lượt vuông góc với hai tiếp tuyến tại A B tạo thành một hình chữ nhật (H) có chiều dài gấp đôi chiều rộng (minh họa như hình vẽ). Gọi 1 S là diện tích hình phẳng giới hạn bởi đồ thị (C) và hai tiếp tuyến tại A B. 2 S là diện tích hình chữ nhật (H). Tỉ số 1 2 S S bằng? + Một người thợ gò làm một cái hòm dạng hình hộp chữ nhật có nắp bằng tôn. Biết rằng độ dài đường chéo hình hộp bằng 3 2 dm và chỉ được sử dụng vừa đủ 2 18dm tôn. Với yêu cầu như trên người thợ có thể làm được cái hòm có thể tích lớn nhất bằng?