Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập viết phương trình đường thẳng trong không gian - Nguyễn Thị Thu

Tài liệu gồm 19 trang hướng dẫn giải các dạng toán viết phương trình đường thẳng trong không gian. Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học. Chuyên đề gồm 3 phần: + Phần I: Phương pháp chung để giải toán + Phần II: Một số dạng toán thường gặp + Phần III: Bài tập tự luận tự luyện + Phần IV: Bài tập trắc nghiệm tự luyện [ads] Các dạng toán viết phương trình đường thẳng trong không gian: + Dạng 1: Viết phương trình tham số và phương trình chính tắc của đường thẳng d biết d đi qua điểm M (x0; y0; z0) và có vectơ chỉ phương u = (a; b; c). + Dạng 2: Viết phương trình tham số của đường thẳng d biết d đi qua hai điểm A, B cho trước. + Dạng 3: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4: Viết phương trình đường thẳng d đi qua điểm M và song song với đường thẳng d’. + Dạng 5: Đường thẳng d đi qua điểm M và song song với 2 mặt phẳng cắt nhau (P) và (Q). + Dạng 6: Viết phương trình đường thẳng d đi qua điểm M, song song với mặt phẳng (P) và vuông góc với đường thẳng d’ (d’ không vuông góc với (P)). + Dạng 7 : Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (d1 và d2 là hai đường thẳng chéo nhau). + Dạng 8: Viết phương trình đường thẳng d đi qua điểm M đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 10: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 11: Viết phương trình đường thẳng d nằm trong mp(P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 12: Viết phương trình đường thẳng d song song với d’ đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 13: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song d1 và d2 đồng thời d nằm trong mặt phẳng chứa d1 và d2. + Dạng 14: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng d1 và d2 chéo nhau. + Dạng 15 : Viết phương trình tham số của đường thẳng d là hình chiếu của d’ trên mặt phẳng (P).

Nguồn: toanmath.com

Đọc Sách

Bài tập phương pháp tọa độ trong không gian - Diệp Tuân
Tài liệu gồm 383 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng toán và tuyển chọn các bài tập trắc nghiệm – tự luận chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh rèn luyện khi học chương trình Hình học 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. BÀI 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN OXYZ. + Dạng toán 1. Xác định tọa độ của điểm, tọa độ vectơ, tích vô hướng. + Dạng toán 2. Ứng dụng của tích có hướng. BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Lập phương trình mặt phẳng khi biết một điểm và một véc tơ pháp tuyến. + Dạng toán 2. Lập phương trình mặt phẳng khi biết một điểm, khoảng cách, góc và chưa có véc tơ pháp tuyến. + Dạng toán 3. Vị trí tương đối của hai mặt phẳng, khoảng cách và góc của hai mặt phẳng. + Dạng toán 4. Tìm hình chiếu của điểm xuống mặt phẳng, tìm điểm đối xứng. + Dạng toán 5. Bài toán cực trị (giá trị lớn nhất và nhỏ nhất). BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Viết phương trình đường thẳng. + Dạng toán 2. Hình chiếu của điểm, của đường thẳng lên đường thẳng, mặt phẳng. + Dạng toán 3. Viết phương tình đường phân giác trong và ngoài của tam giác, của hai đường thẳng. + Dạng toán 4. Một số bài toán liên quan đến góc, khoảng cách và tương giao. BÀI 4 . PHƯƠNG TRÌNH MẶT CẦU. + Dạng toán 1. Xác định tâm và bán kính mặt cầu cho trước. + Dạng toán 2. Viết phương trình mặt cầu thỏa mãn điều kiện cho trước. BÀI 5 . ỨNG DỤNG PHƯƠNG PHÁP TỌA ĐỘ.
Các dạng bài tập VDC phương pháp tọa độ trong không gian
Tài liệu gồm 65 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương pháp tọa độ trong không gian, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương pháp tọa độ trong không gian: CHỦ ĐỀ 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1: Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Dạng 2: Tích có hướng. Dạng 3: Ứng dụng của tích có hướng để tính diện tích và thể tích. Dạng 4: Phương trình mặt cầu. CHỦ ĐỀ 2 . PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu. Dạng 3: Phương trình mặt phẳng đoạn chắn. Dạng 4: Vị trí tương đối giữa hai mặt phẳng. Dạng 5: Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 6: Khoảng cách từ một điểm đến mặt phẳng. Dạng 7: Góc giữa hai mặt phẳng. Dạng 8: Một số bài toán cực trị. CHỦ ĐỀ 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1: Viết phương trình đường thẳng. Dạng 2: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 3: Góc giữa đường thẳng và mặt phẳng. Dạng 4: Góc giữa hai đường thẳng. Dạng 5: Khoảng cách từ một điểm đến đường thẳng. Dạng 6: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 7: Vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 8: Vị trí tương đối giữa hai đường thẳng. Dạng 9: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 10: Một số bài toán cực trị.
Các dạng bài tập VDC phương trình đường thẳng
Tài liệu gồm 34 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình đường thẳng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình đường thẳng: A. LÍ THUYẾT TRỌNG TÂM 1. Phương trình đường thẳng. + Vectơ chỉ phương của đường thẳng. + Phương trình tham số của đường thẳng. + Phương trình chính tắc. 2. Khoảng cách. + Khoảng cách từ điểm đến đường thẳng. + Khoảng cách giữa hai đường thẳng chéo nhau. 3. Vị trí tương đối. + Vị trí tương đối giữa hai đường thẳng. + Vị trí tương đối giữa đường thẳng và mặt phẳng. + Vị trí tương đối giữa đường thẳng và mặt cầu. 4. Góc. + Góc giữa hai đường thẳng. + Góc giữa đường thẳng và mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1: Viết phương trình đường thẳng. Dạng 2: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 3: Góc giữa đường thẳng và mặt phẳng. Dạng 4: Góc giữa hai đường thẳng. Dạng 5: Khoảng cách từ một điểm đến đường thẳng. Dạng 6: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 7: Vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 8: Vị trí tương đối giữa hai đường thẳng. Dạng 9: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 10: Một số bài toán cực trị.
Các dạng bài tập VDC phương trình mặt phẳng
Tài liệu gồm 19 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mặt phẳng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình mặt phẳng: A. LÍ THUYẾT TRỌNG TÂM 1. Phương trình mặt phẳng. 2. Khoảng cách từ một điểm tới mặt phẳng. 3. Vị trí tương đối. 4. Góc giữa hai mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu. Dạng 3: Phương trình mặt phẳng đoạn chắn. Dạng 4: Vị trí tương đối giữa hai mặt phẳng. Dạng 5: Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 6: Khoảng cách từ một điểm đến mặt phẳng. Dạng 7: Góc giữa hai mặt phẳng. Dạng 8: Một số bài toán cực trị.