Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập hàm số lượng giác và phương trình lượng giác

Tài liệu gồm 64 trang tóm tắt các lý thuyết SGK, công thức, phân dạng và các bài tập hàm số lượng giác và phương trình lượng giác, giúp học sinh tham khảo trong quá trình học tập chương trình Đại số và Giải tích 11 chương 1. BÀI 1 . CÔNG THỨC LƯỢNG GIÁC CẦN NẮM. BÀI 2 . HÀM SỐ LƯỢNG GIÁC. Dạng 2.1 . Tìm tập xác định của hàm số lượng giác. Để tìm tập xác định của hàm số lượng giác ta cần nhớ: + Điều kiện xác định hàm số: y = tan f(x), y = cot f(x). + Một số trường hợp tìm tập xác định thường gặp. + Cần nhớ những trường hợp đặc biệt. Dạng 2.2 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. + Dựa vào tập giá trị của hàm số lượng giác. + Kết luận: max y = M và min y = m. Dạng 2.3 . Xét tính chẵn lẻ của hàm số lượng giác. + Tìm tập xác định D của hàm số lượng giác. + Tính f(-x), nghĩa là sẽ thay x bằng -x, so sánh với f(x). [ads] BÀI 3 . PHƯƠNG TRÌNH LƯỢNG GIÁC. A. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. B. MỘT SỐ KỸ NĂNG GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC. Dạng 3.1 . Sử dụng thành thạo cung liên kết: cung đối nhau, cung bù nhau, cung phụ nhau, cung hơn kém π, cung hơn kém π/2, tính chu kỳ. Dạng 3.2 . Ghép cung thích hợp để áp dụng công thức tích thành tổng. Khi áp dụng tổng thành tích đối với hai hàm sin và cosin thì nên nhẩm (tổng và hiệu) hai cung mới này trước để nhóm hạng tử thích hợp sao cho xuất hiện nhân tử chung (cùng cung) với hạng tử còn lại hoặc cụm ghép khác trong phương trình cần giải. Dạng 3.3 . Hạ bậc khi gặp bậc chẵn của sin và cos. Mục đích cả việc hạ bậc để triệt tiêu hằng số không mong muốn và nhóm hạng tử thích hợp để sau khi áp dụng công thức (tổng thành tích sau khi hạ bậc) sẽ xuất hiện nhân tử chung hoặc làm bài toán đơn giản hơn. Dạng 3.4 . Xác định nhân tử chung để đưa về phương trình tích. Đa số đề thi, kiểm tra thường là những phương trình đưa về tích số. Do đó, trước khi giải ta phải quan sát xem chúng có những lượng nhân tử chung nào, sau đó định hướng để tách, ghép, nhóm phù hợp.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số lượng giác và phương trình lượng giác - Võ Anh Dũng
I. CÁC HÀM SỐ LƯỢNG GIÁC + Dạng 1: Tìm tập xác định của hàm số + Dạng 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác + Dạng 3: Tìm chu kỳ của hàm số lượng giác + Dạng 4: Xét tính đồng biến, nghịch biến của hàm số lượng giác II. PHƯƠNG TRÌNH LƯỢNG GIÁC [ads] 1. Phương trình lượng giác cơ bản 2. Phương trình bậc hai đối với một hàm số lượng giác 3. Phương trình bậc nhất đối với sinx và cosx 4. Phương trình dẳng cấp bậc hai 5. Phương trình đối xứng III. BÀI TẬP TRẮC NGHIỆM
Bài thơ, bài vè, mẹo học nhanh công thức lượng giác
Bộ sưu tập một số mẹo học nhanh công thức Lượng Giác bằng cách sử dụng nghệ thuật thơ dân gian. Mặc dù các bài thơ không bao giờ là cách học công thức hiệu quả nhất, song những vần nhịp và sắc thái dân gian của nó cũng là một phương pháp ghi nhớ đáng để nghiên cứu và phát triển. 1. Định nghĩa giá trị lượng giác 2. Giá trị LG thông dụng 3. Tính chất 3.1. Cung liên kết 3.2. Dấu [ads] 4. Công thức LG 4.1. Công thức cộng 4.2. Công thức biến tích thành tổng 4.3. Công thức biến tổng thành tích 4.4. Công thức nhân ba 4.5. Đẳng thức LG trong tam giác 4.6. Bốn công thức tổng quát hữu dụng
Hướng dẫn sử dụng máy tính cầm tay giải phương trình bậc nhất theo SIN và COS - Dương Trác Việt
Trên cả ba phương diện tự luận, bán tự luận – điền khuyết và trắc nghiệm, bài viết đề cập quá trình tư duy, thao tác bấm máy và cách trình bày khi giải quyết các phương trình lượng giác cổ điển đối với sine và cosine. Tùy vào hình thức kiểm tra đánh giá và mức độ phức tạp của đề bài mà việc sử dụng máy tính cầm tay sẽ hỗ trợ một phần hoặc toàn bộ quá trình tìm ra phương án. Với dạng thức điền khuyết, tối ưu hóa con đường tự luận bằng cách dùng công thức hệ quả là một hướng tiếp cận an toàn nhưng tạo thêm áp lực ghi nhớ cho người học. Ở một phương diện khác, phương pháp Newton – Raphson có vẻ như khắc phục hoàn toàn hạn chế nói trên lại đòi hỏi tư duy linh hoạt trong xử lý khoảng chứa nghiệm – vốn còn khá lạ lẫm với đa số học sinh đại trà. [ads] Ở những câu hỏi trắc nghiệm khó, thí sinh cần trang bị thêm kỹ năng chuẩn hóa họ nghiệm và loại bỏ các nghiệm thuộc cùng một họ để vượt qua phương án nhiễu và xác định phương án đúng. Bên cạnh đó, năng lực “quy lạ về quen” cũng là cứu cánh trước những dạng bài tập mà các em chưa gặp bao giờ, vì thế cần phải tôi luyện kỹ. Nhìn chung, học sinh nên cân nhắc việc sử dụng máy tính cầm tay một cách hợp lý, tránh phụ thuộc hoàn toàn vào công cụ này. Đồng thời giáo viên cũng cần quan tâm đúng mức đến vấn đề tối ưu hóa cách giải tự luận theo định hướng trắc nghiệm khách quan nhằm đáp ứng thực tiễn bối cảnh hiện nay.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Huỳnh Đức Khánh
Tài liệu gồm 65 trang với nội dung gồm: Bài 1. Hàm số lượng giác + Vấn đề 1. Tập xác định + Vấn đề 2. Tính chẵn lẻ + Vấn đề 3. Tính tuần hoàn + Vấn đề 4. Tính đơn điệu + Vấn đề 5. Đồ thị của hàm số lượng giác + Vấn đề 6. Giá trị lớn nhất – Giá trị nhỏ nhất [ads] Bài 2. Phương trình lượng giác cơ bản Bài 3. Một số phương trình lượng giác thường gặp + Vấn đề 1. Phương trình bậc nhất đối với một hàm số lượng giác + Vấn đề 2. Phương trình bậc nhất đối với sinx và cosx + Vấn đề 3. Phương trình bậc hai đối với một hàm số lượng giác + Vấn đề 4. Phương trình bậc nhất đối với sinx và cosx + Vấn đề 5. Phương trình chứa sinx +- cosx và sinxcosx