Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập hàm số lượng giác và phương trình lượng giác

Tài liệu gồm 64 trang tóm tắt các lý thuyết SGK, công thức, phân dạng và các bài tập hàm số lượng giác và phương trình lượng giác, giúp học sinh tham khảo trong quá trình học tập chương trình Đại số và Giải tích 11 chương 1. BÀI 1 . CÔNG THỨC LƯỢNG GIÁC CẦN NẮM. BÀI 2 . HÀM SỐ LƯỢNG GIÁC. Dạng 2.1 . Tìm tập xác định của hàm số lượng giác. Để tìm tập xác định của hàm số lượng giác ta cần nhớ: + Điều kiện xác định hàm số: y = tan f(x), y = cot f(x). + Một số trường hợp tìm tập xác định thường gặp. + Cần nhớ những trường hợp đặc biệt. Dạng 2.2 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. + Dựa vào tập giá trị của hàm số lượng giác. + Kết luận: max y = M và min y = m. Dạng 2.3 . Xét tính chẵn lẻ của hàm số lượng giác. + Tìm tập xác định D của hàm số lượng giác. + Tính f(-x), nghĩa là sẽ thay x bằng -x, so sánh với f(x). [ads] BÀI 3 . PHƯƠNG TRÌNH LƯỢNG GIÁC. A. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. B. MỘT SỐ KỸ NĂNG GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC. Dạng 3.1 . Sử dụng thành thạo cung liên kết: cung đối nhau, cung bù nhau, cung phụ nhau, cung hơn kém π, cung hơn kém π/2, tính chu kỳ. Dạng 3.2 . Ghép cung thích hợp để áp dụng công thức tích thành tổng. Khi áp dụng tổng thành tích đối với hai hàm sin và cosin thì nên nhẩm (tổng và hiệu) hai cung mới này trước để nhóm hạng tử thích hợp sao cho xuất hiện nhân tử chung (cùng cung) với hạng tử còn lại hoặc cụm ghép khác trong phương trình cần giải. Dạng 3.3 . Hạ bậc khi gặp bậc chẵn của sin và cos. Mục đích cả việc hạ bậc để triệt tiêu hằng số không mong muốn và nhóm hạng tử thích hợp để sau khi áp dụng công thức (tổng thành tích sau khi hạ bậc) sẽ xuất hiện nhân tử chung hoặc làm bài toán đơn giản hơn. Dạng 3.4 . Xác định nhân tử chung để đưa về phương trình tích. Đa số đề thi, kiểm tra thường là những phương trình đưa về tích số. Do đó, trước khi giải ta phải quan sát xem chúng có những lượng nhân tử chung nào, sau đó định hướng để tách, ghép, nhóm phù hợp.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề phương trình lượng giác sơ cấp
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác sơ cấp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM + Loại 1: Phương trình sin x = m. + Loại 2: Phương trình cos x = m. + Loại 3: Phương trình tan x = m. + Loại 4: Phương trình cot x = m. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Tài liệu chủ đề hàm số lượng giác
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hàm số lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Tính tuần hoàn của hàm số lượng giác. 3) Tính chẵn lẻ của hàm số lượng giác. 4) Sự biến thiên và đồ thị các hàm số lượng giác. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Tập xác định và tập giá trị của hàm số lượng giác. Dạng 2: Tính chẵn lẻ của hàm số lượng giác. Dạng 3: Chu kì của hàm số lượng giác. Dạng 4: Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Tổng ôn chuyên đề cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 42 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chuyên đề cung và góc lượng giác, công thức lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 10 tổng ôn chương trình Đại số 10 chương 6. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Dấu của hàm số lượng giác. 3) Mối quan hệ giữa các cung lượng giác đặc biệt. 5) Công thức góc nhân đôi, nhân ba. 6) Công thức hạ bậc hai, bậc ba. 7) Công thức biến đổi tích sang tổng và ngược lại. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Hoàng Việt
Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm (có đáp án) chuyên đề hàm số lượng giác và phương trình lượng giác (Toán 11 phần Đại số và Giải tích chương 1). Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §1 – HÀM SỐ LƯỢNG GIÁC 1. A KIẾN THỨC CẦN NHỚ 1. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 2. + Dạng 1. Tìm tập xác định của hàm số lượng giác 2. + Dạng 2. Tính chẵn lẻ của hàm số 6. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 7. C BÀI TẬP TRẮC NGHIỆM 12. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 19. A KIẾN THỨC CẦN NHỚ 19. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 21. + Dạng 1. Giải các phương trình lượng giác cơ bản 21. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 23. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 25. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước 27. C BÀI TẬP TRẮC NGHIỆM 29. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 37. A KIẾN THỨC CẦN NHỚ 37. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 38. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 38. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 41. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 45. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 48. + Dạng 5. Phương trình chứa sin x ± cos x và sin x · cos x 50. C BÀI TẬP TRẮC NGHIỆM 51. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 59. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 59. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 59. + Dạng 2. Biến đổi asinx + bcosx 62. + Dạng 3. Biến đổi đưa về phương trình tích 64. + Dạng 4. Một số bài toán biện luận theo tham số 67. B BÀI TẬP TỰ LUYỆN 70. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 73. A Đề số 1 73. B Đề số 2 79. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 83.