Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Phúc

Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 phần: phần trắc nghiệm gồm 04 câu, chiếm 02 điểm, phần tự luận gồm 04 câu, chiếm 08 điểm, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. + Một đội xe theo kế hoạch mỗi ngày chở số tấn hàng như nhau và dự định chở 140 tấn hàng trong một số ngày. Do mỗi ngày đội xe đó chở vượt mức 5 tấn nên đội xe đã hoàn thành kế hoạch sớm hơn thời gian dự định 1 ngày và chở thêm được 10 tấn hàng. Hỏi số ngày dự định theo kế hoạch là bao nhiêu? [ads] + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm). Kẻ đường kính BD của đường tròn (O). Đường thẳng đi qua O vuông góc với đường thẳng AD và cắt AD, BC lần lượt tại K, E. Gọi I là giao điểm của OA và BC. a) Chứng minh rằng các tứ giác ABOC, AIKE nội tiếp đường tròn. b) Chứng minh rằng OI.OA = OK.OE. c) Biết OA = 5 cm, đường tròn (O) có bán kính R = 3cm. Tính độ dài đoạn thẳng BE.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Tiền Giang
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Tiền Giang Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Tiền Giang Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Tiền Giang đang gây chú ý với 5 bài toán tự luận, cung cấp lời giải chi tiết cho học sinh. Trong số đó, có các bài toán như sau: 1. Hai thành phố A và B cách nhau 150km. Một xe máy khởi hành từ A đến B, đồng thời một ôtô khởi hành từ B đến A với vận tốc nhanh hơn xe máy là 10km/h. Sau 30 phút ôtô đến A, thì xe máy cũng đến B. Hãy tính vận tốc của mỗi phương tiện. 2. Cho nửa đường tròn tâm O, đường kính AB = 2R. Điểm M là trung điểm của cung AB, điểm N thuộc cung MB (khác M và B). Tia AM và AN cắt tiếp tuyến tại B của nửa đường tròn tại C và D. Các câu hỏi cụ thể: Tính góc ACB Chứng minh tứ giác MNDC nội tiếp Chứng minh AM.AC = AN.AD = 4R^2 3. Hình nón có đường sinh bằng 26cm và diện tích xung quanh là 260pi cm2. Hãy tính bán kính đáy và thể tích của hình nón. Với những câu hỏi thú vị và đa dạng như vậy, đề thi toán tuyển sinh THPT năm học 2017 – 2018 ở Tiền Giang đang thu hút sự quan tâm của các thí sinh và giáo viên.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương bao gồm 4 bài toán tự luận. Trong đề thi có một số bài toán thú vị như sau: 1. Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D, E, F lần lượt là tiếp điểm của (O) với các cạnh AB, AC, BC, I là giao điểm của BO với EF, M là điểm di động trên đoạn CE. a. Tính số đo góc BIF. b. Gọi H là giao điểm của BM và EF. Chứng minh rằng nếu AM = AB thì tứ giác ABHI là tứ giác nội tiếp. c. Gọi N là giao điểm của BM với cung nhỏ EF của (O), P và Q lần lượt là hình chiếu vuông góc của N lên các đường thẳng DE, DF. Xác định vị trí của điểm M để độ dài PQ là lớn nhất. Đây là một trong những đề thi tuyển sinh khó, đòi hỏi học sinh phải nắm vững kiến thức và có khả năng tự tư duy, giải quyết vấn đề một cách logic. Hy vọng học sinh sẽ có kết quả tốt khi tham gia vào bài thi này.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán)
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán của trường chuyên Lê Quý Đôn ở Bình Định (chuyên Toán) được thiết kế với 5 bài toán tự luận, đi kèm lời giải chi tiết. Một trong những bài toán trong đề bao gồm các phần sau: Cho một đường tròn (T) có tâm O và đường kính AB. Trên tiếp tuyến tại A, ta lấy một điểm P khác A và điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (trong đó C nằm giữa P và D), H là trung điểm của đoạn thẳng CD. a) Chứng minh rằng tứ giác AOHP nội tiếp được đường tròn. b) Vẽ DI song song với PO, với I thuộc AB, chứng minh: góc PDI bằng góc BAH. c) Chứng minh rằng PA^2 = PC.PD. d) BC cắt OP tại J, chứng minh rằng AJ song song với DB. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức về đường tròn và hình học không gian để giải quyết các bài toán phức tạp. Qua đó, giúp học sinh phát triển tư duy logic, khả năng suy luận và giải quyết vấn đề một cách logic và hiệu quả.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Toán)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh Chuyên Toán năm học 2017 – 2018 trường THPT chuyên Hùng Vương Phú Thọ Đề thi tuyển sinh Chuyên Toán năm học 2017 – 2018 trường THPT chuyên Hùng Vương Phú Thọ Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Toán) bao gồm 5 bài toán tự luận. Dưới đây là một số bài toán trong đề: Tìm các số nguyên m sao cho m^2 + 12 là số chính phương. Chứng minh rằng trong 11 số nguyên tố phân biệt, lớn hơn 2 bất kỳ luôn chọn được hai số a, b sao cho a^2 – b^2 chia hết cho 60. Cho tam giác ABC cân với góc BAC = 120 độ, nội tiếp đường tròn (O). Gọi D là giao điểm của đường thẳng AC với tiếp tuyến của (O) tại B; E là giao điểm của đường thẳng BO với đường tròn (O) ( E khác B); F, I lần lượt là giao điểm của DO với AB, BC; M, N lần lượt là trung điểm của AB, BC. a) Chứng minh rằng tứ giác ADBN nội tiếp. b) Chứng minh rằng F, N, E thẳng hàng. c) Chứng minh rằng các đường thẳng MI, BO, FN đồng quy.