Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nguyên hàm và các phương pháp tìm nguyên hàm - Trần Văn Tài

Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm được biên soạn bởi thầy Trần Văn Tài gồm 70 trang tóm tắt các lý thuyết và tính chất của nguyên hàm, phân dạng toán, hướng dẫn phương pháp tìm nguyên hàm và tuyển chọn các bài tập trắc nghiệm nguyên hàm có đáp án giúp học sinh học tốt nội dung kiến thức nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3). Khái quát nội dung tài liệu nguyên hàm và các phương pháp tìm nguyên hàm – Trần Văn Tài: A. Khái niệm nguyên hàm và tính chất của nguyên hàm . + Trình bày khái niệm và tính chất của nguyên hàm. + Bảng nguyên hàm một số hàm số thường gặp (với C là hằng số tùy ý). + Một số lưu ý cần nắm: 1. Cần nắm vững bảng nguyên hàm. 2. Nguyên hàm của một tích (thương) của nhiều hàm hàm số không bao giờ bằng tích (thương) của các nguyên hàm của những hàm thành phần. 3. Muốn tìm nguyên hàm của một hàm số, ta phải biến đổi hàm số này thành một tổng hoặc hiệu của những hàm số tìm được nguyên hàm (dựa vào bảng nguyên hàm). B. Các dạng toán nguyên hàm thường gặp và phương pháp tìm nguyên hàm . Dạng toán 1 . TÍNH NGUYÊN HÀM BẰNG BẢNG NGUYÊN HÀM 1. Tích của đa thức hoặc lũy thừa → khai triển. 2. Tích các hàm mũ → khai triển theo công thức mũ. 3. Chứa căn → chuyển về lũy thừa. 4. Tích lượng giác bậc một của sin và cosin → khai triển theo công thức tích thành tổng. 5. Bậc chẵn của sin và cosin → hạ bậc. [ads] Dạng toán 2 . TÍNH NGUYÊN HÀM CỦA HÀM SỐ HỮU TỶ 1. Nếu bậc của tử số P(x) ≥ bậc của mẫu số Q(x) → Chia đa thức. 2. Nếu bậc của tử số P(x) < bậc của mẫu số Q(x) → Xem xét mẫu số và khi đó: + Nếu mẫu số phân tích được thành tích số, ta sẽ sử dụng đồng nhất thức để đưa về dạng tổng của các phân số. + Nếu mẫu số không phân tích được thành tích số (biến đổi và đưa về dạng lượng giác). Dạng toán 3 . TÍNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 1. Đổi biến số dạng 1: t = φ(x). 2. Đổi biến số dạng 2: x = φ(t). Dạng toán 4 . TÍNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN + Nhận dạng: Tích 2 hàm khác loại nhân với nhau. + Thứ tự ưu tiên chọn u: log – đa – lượng – mũ và dv = phần còn lại. Nghĩa là nếu có In hay log thì chọn u = ln hay u = log và dv = còn lại. Nếu không có ln, log thì chọn u = đa thức và dv = còn lại. Nếu không có log, đa thức, ta chọn u = lượng giác … + Lưu ý rằng bậc của đa thức và bậc của In tương ứng với số lần lấy nguyên hàm. + Dạng mũ nhân lượng giác là dạng nguyên hàm từng phần luân hồi.

Nguồn: toanmath.com

Đọc Sách

50 bài toán thực tế liên quan đạo hàm - tích phân có lời giải
Tài liệu gồm 54 trang, tuyển chọn 50 bài toán thực tế liên quan đạo hàm – tích phân thường gặp trong đề thi thử THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu 50 bài toán thực tế liên quan đạo hàm – tích phân có lời giải: + Một con kiến đậu ở đầu B của một thanh cứng mảnh AB có chiều dài L đang dựng cạnh một bức tường thẳng đứng (hình vẽ). Vào thời điểm mà đầu B bắt đầu chuyển động sang phải theo sàn ngang với vận tốc không đổi v thì con kiến bắt đầu bò dọc theo thanh với vận tốc không đổi u đối với thanh. Trong quá trình bò trên thanh, con kiến đạt được độ cao cực đại max h là bao nhiêu đối với sàn? Cho đầu A của thanh luôn tỳ lên tường thẳng đứng. + Từ một khúc gỗ tròn hình trụ có đường kính bằng 40 cm, cần xả thành một chiếc xà có tiết diện ngang là hình vuông và bốn miếng phụ được tô màu xám như hình vẽ dưới đây. Tìm chiều rộng x của miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. + Một điểm C trên hòn đảo có khoảng cách ngắn nhất đến bờ biển là 60 km, B là điểm trên bờ biển sao cho CB vuông góc với bờ biển. Khoảng cách từ A trên bờ biển đến B là 100 km. Để tham dự buổi họp nhóm Strong Team Toán VD – VCD ngày 28/6/2019, thầy Quý phải tính toán vị trí diễn ra cuộc họp tại địa điểm G trên đoạn AB để tổng chi phí đi lại của cả hai nhóm các thầy cô là ít nhất. Biết nhóm của thầy Quý đi từ C theo đường biển chi phí đi là 500 nghìn mỗi km, nhóm cô Thêm đi từ vị trí A đi trên đất liền mỗi km chi phí là 300 nghìn. Hỏi thầy tìm được vị trí điểm G cách B bao xa?
Ứng dụng của tích phân trong hình học
Tài liệu gồm 376 trang được biên soạn bởi quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em, tuyển tập 647 câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong hình học, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình tự học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Khái quát nội dung tài liệu ứng dụng của tích phân trong hình học: Phần 1 . Câu hỏi và bài tập mức độ nhận biết: 100 câu. + Cho hình phẳng D giới hạn bởi đường cong y = e mũ x, trục hoành và các đường thẳng x = 0, x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu? + Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = cos x,  y = 0, x = 0, x = π quay xung quanh Ox. Phần 2 . Câu hỏi và bài tập mức độ thông hiểu: 199 câu. + Diện tích hình phẳng giới hạn bởi các đường y = √(1 + ln x)/x, y = 0, x = 1, x = e là S = a√2 + b. Khi đó tính giá trị a^2 + b^2? + Tính diện tích hình phẳng giới hạn bởi đồ thị (P): y = x^2 − 4x + 5 và các tiếp tuyến với (P) tại A(1;2) và B(4;5). [ads] Phần 3 . Câu hỏi và bài tập mức độ vận dụng thấp: 199 câu. + Diện tích hình phẳng nằm trong góc phần tư thứ nhất, giới hạn bởi các đường thẳng y = 8x, y = x và đồ thị hàm số y = x^3 là phân số tối giản. Khi đó a + b bằng? + Bác Năm làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Vậy số tiền bác Năm phải trả là? Phần 4 . Câu hỏi và bài tập mức độ vận dụng cao: 100 câu. + Cho hàm số y = f(x) có đồ thị hàm số y = f'(x) cắt trục Ox tại ba điểm có hoành độ a < b < c như hình vẽ. Xét 4  mệnh đề sau:  (1): f(c) < f(a) < f(b). (2): f(c) > f(b) > f(a). (3): f(a) > f(b) > f(c). (4): f(a) > f(b). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? + Cho số dương a thỏa mãn hình phẳng giới hạn bởi các đường parabol y = ax2 − 2 và y = 4 − 2ax2 có diện tích bằng 16. Tìm giá trị của a. Phần 5 . Ứng dụng tích phân giải bài toán thực tế: 49 câu. + Một quả trứng có hình dạng khối tròn xoay, thiết diện qua trục của nó là hình elip có độ dài trục lớn bằng 6, độ dài trục bé bằng 4. Tính thể tích quả trứng đó. + Sân chơi cho trẻ em hình chữ nhật có chiều dài 100 m và chiều rộng là 60 m người ta làm một con đường nằm trong sân (như hình vẽ).
Tích phân liên quan đến phương trình hàm ẩn
Tài liệu gồm 27 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán tích phân liên quan đến phương trình hàm ẩn, được phát triển dựa trên câu 48 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu tích phân liên quan đến phương trình hàm ẩn: A. KIẾN THỨC CẦN NHỚ 1. Các tính chất tích phân. 2. Công thức đổi biến số. B. BÀI TẬP MẪU 1. Đề bài : Cho hàm số $f(x)$ liên tục trên $R$ và thỏa mãn $xf\left( {{x^3}} \right) + f\left( {1 – {x^2}} \right)$ $ = – {x^{10}} + {x^6} – 2x$ với mọi $\forall x \in R.$ Khi đó $\int_{ – 1}^0 f (x)dx$ bằng? [ads] 2. Phân tích hướng dẫn giải 1. Dạng toán: Tính tích phân hàm ẩn. 2. Kiến thức cần nhớ: + Công thức đổi biến số trong tích phân. + Tính chất tích phân. 3. Hướng giải: + Bước 1: Nhân cả hai vế của phương trình với $x$ rồi sử dụng tích phân hai vế để tính $\int_{ – 1}^1 f (x)dx.$ + Bước 2: Nhân cả hai vế của phương trình với $x$ rồi sử dụng tích phân hai vế để tính $\int_0^1 f (x)dx.$ + Bước 3: Kết luận $\int_{ – 1}^0 f (x)dx.$ C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng. Bên cạnh tài liệu ứng dụng tích phân dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân: A. KIẾN THỨC CƠ BẢN 1. Diện tích hình phẳng. 2. Thể tích vật thể và thể tích khối tròn xoay. B. CÂU HỎI TRẮC NGHIỆM I – Câu hỏi tính diện tích hình phẳng giới hạn bởi các đường + Trường hợp 1. Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên đoạn $[a;b].$ Diện tích hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$, $x = a$, $x = b$ là $S = \int_a^b | f(x) – g(x)|dx.$ + Trường hợp 2. Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên đoạn $[a;b].$ Diện tích hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$ là $S = \int_\alpha ^\beta | f(x) – g(x)|dx.$ Trong đó $\alpha $, $\beta $ là nghiệm nhỏ nhất và lớn nhất của phương trình $f(x) = g(x)$ $(a \le \alpha < \beta \le b).$ II – Câu hỏi tính tính thể tích vật tròn xoay giới hạn bởi các đường + Trường hợp 1. Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường $y = f(x)$, $y = 0$, $x = a$ và $x = b$ $(a < b)$ quay quanh trục $Ox$ là $V = \pi \int_a^b {{f^2}} (x)dx.$ + Trường hợp 2. Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$, $x = a$ và $x = b$ $(a < b)$ quay quanh trục Ox là $V = \pi \int_a^b {\left| {{f^2}(x) – {g^2}(x)} \right|dx} .$ C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM