Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường chuyên Nguyễn Đình Chiểu Đồng Tháp

Nội dung Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường chuyên Nguyễn Đình Chiểu Đồng Tháp Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT chuyên Nguyễn Đình Chiểu, thành phố Sa Đéc, tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 20 tháng 12 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kì 1 Toán lớp 11 năm 2023 – 2024 trường chuyên Nguyễn Đình Chiểu – Đồng Tháp : + Ông Hai có một kệ gỗ để vật dụng gia đình gồm 2 tầng song song nhau. Để tăng diện tích để vật dụng, ông Hai đóng thêm một mặt gỗ ở giữa hai tầng để trở thành kệ gỗ 3 tầng. Do đó, ông Hai kí hiệu và đo các kích thước như hình bên dưới. Nếu ông Hai đo đoạn AM cm 20 thì ông Hai phải đo CP dài bao nhiêu cm để mặt gỗ MNPQ song song với 2 tầng kia? Biết AE cm CG cm 60 66. + Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O. Gọi E, K lần lượt là trung điểm của các cạnh SB, CD. a) Tìm giao tuyến của hai mặt phẳng (EOK) và (SBC), tìm giao điểm của SC và (EOK). b) Chứng minh: EK SAD. + Cho hình vuông ABCD có cạnh bằng 2 và có diện tích 1 S. Nối 4 trung điểm A1, B1, C1, D1 theo thứ tự của 4 cạnh AB, BC, CD, DA ta được hình vuông thứ hai ABCD 111 1 có diện tích 2 S. Tiếp tục làm như thế, ta được hình vuông thứ ba là ABCD 222 2 có diện tích 3 S và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích 4 S 5 S 100 S (xem hình vẽ). Tính tổng 1 2 3 100 SSS. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HKI Toán 11 năm 2019 - 2020 trường Nguyễn Bỉnh Khiêm - TP HCM
Đề thi HKI Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM gồm 30 câu trắc nghiệm và 07 câu tự luận, phần trắc nghiệm chiếm 06 điểm, phần tự luận chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM : + Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn là AB. Gọi M, N lần lượt là trung điểm của SA, SB, điểm P thuộc SC sao cho SP = 2PC. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Tìm giao điểm Q của SD và mặt phẳng (MNP). c) Tìm thiết diện của mặt phẳng (MNP) và hình chóp S.ABCD. d) Gọi I, J, K lần lượt là giao điểm của AD và MQ, MP và AC, NQ và BD. Chứng minh I, J, K thẳng hàng. + Có hai hộp chứa 8 bút xanh và 10 bút đỏ. Chọn ra hai bút. Tính xác suất để: a) Hai bút khác màu. b) Hai bút cùng màu. + Từ tập A = {0, 1, 2, 3, 4, 5} lập được bao nhiêu số tự nhiên thỏa mãn: a) Số gồm 4 chữ số phân biệt. b) Số chẵn gồm 4 chữ số phân biệt.
Đề thi học kỳ 1 Toán 11 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
Đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Thang máy của công ty A được thiết kế để mở cửa như sau: trên bảng điểu khiển có 10 nút được đánh số từ 0 đến 9, để mở cửa cần nhấn liên tiếp ba nút khác nhau sao cho ba số trên ba nút đó theo thứ tự đã nhấn tạo thành dãy số tăng và có tổng bằng 10. Nhân viên B không biết quy tắc mở cửa nói trên, đã nhấn ngẫu nhiên liên tiếp 3 nút khác nhau trên bảng điều khiển. a. Xây dựng biến cố ngẫu nhiên “Ba số trên ba nút theo thứ tự đã nhấn tạo thành dãy số tăng và có tổng bằng 10”. b. Tính xác suất để nhân viên B mở cửa thang máy được. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của AD, BC, SA. a) Tìm giao tuyến của (SAN) và (PCD). b) Tìm giao điểm của SB với mặt phẳng (MNP). c) G là trọng tâm tam giác SAB. Chứng minh SC // (GAN). + Khi khai triển (x –1)^n ta được hệ số của x3 là –20. Tìm n.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Văn Cừ - TP HCM
Đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM gồm 01 trang với 09 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 20 tháng 12 năm 2020, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM : + Cho hình chóp SABCD có ABCD là hình thang (AB đáy lớn). Gọi E, F, M, N lần lượt là trung điểm các cạnh SA, SB, BC, AD. a) Tìm giao tuyến của 2 mặt phẳng (EBC) và (SAD). b) Chứng minh EF // (SMN). + Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của hai đường thẳng AC và BD; E, F lần lượt là trung điểm các cạnh SA và SB. Chứng minh (OEF) // (SCD). + Gieo 1 con súc sắc 2 lần. Tính xác suất mặt 6 chấm xuất hiện ít nhất 1 lần.
Đề thi cuối học kì 1 Toán 11 năm học 2019 - 2020 trường Việt Úc - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi cuối học kì 1 Toán 11 năm học 2019 – 2020 trường Việt Úc – TP HCM; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán 11 năm học 2019 – 2020 trường Việt Úc – TP HCM : + Cho hình chóp S.BCDE có đáy là hình thang (với BC là đáy lớn và BC // ED). a/ Tìm giao tuyến của mặt phẳng (SBE) và (SCD); mặt phẳng (SBC) và (SED). b/ Gọi I, J lần lượt là trung điểm của SC và SD. Chứng minh: CD// (IJB). c/ Tìm giao điểm của BJ và mặt phẳng (SCE). d/ Xác định thiết diện của mặt phẳng (BIJ) với hình chóp S.BCDE. + Lớp 11A có 35 học sinh gồm 15 nữ và 20 nam. Cần chọn ngẫu nhiên 6 bạn để tham gia trồng cây tại rừng Cần Giờ. Tính xác suất để trong 6 bạn được chọn: i/ số bạn nam bằng số bạn nữ. ii/ có ít nhất 1 nam và ít nhất 1 nữ. + Từ các số {0; 1; 2; 3; 5; 6; 7; 8} lập được bao nhiêu số chẵn có 4 chữ số đôi một khác nhau.