Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo Toán thi vào 10 năm 2023 2024 phòng GD ĐT thị xã Phú Thọ

Nội dung Đề tham khảo Toán thi vào 10 năm 2023 2024 phòng GD ĐT thị xã Phú Thọ Bản PDF - Nội dung bài viết Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ Sytu xin gửi đến quý thầy cô và các em học sinh đề tham khảo môn Toán cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 của phòng Giáo dục và Đào tạo thị xã Phú Thọ, tỉnh Phú Thọ. Đề thi bao gồm câu hỏi và đáp án dự kiến để giúp các em ôn tập hiệu quả. Trích dẫn đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ: 1. Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số mới lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành 99. Tổng các chữ số của số đó là bao nhiêu? 2. Cho hàm số y = ax^2 với a ≠ 0. Kết luận nào sau đây là đúng? A. Hàm số đồng biến khi a > 0 và x > 0 B. Hàm số đồng biến khi a > 0 và x > 0 C. Hàm số đồng biến khi a > 0 và x < 0 D. Hàm số đồng biến khi a > 0 và x = 0. 3. Cho hai điểm A, B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC = BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến tại A ở D cắt AB ở E. Đường thẳng đi qua E vuông góc với AB cắt AC, BD lần lượt tại F, G. Gọi I là trung điểm của AE. a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn. b) Chứng minh rằng 2AB = OD = BC c) Chứng minh EF^2 = EG^2 d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định. Hy vọng đề tham khảo này sẽ giúp các em học sinh ôn tập Toán hiệu quả và tự tin sẵn sàng cho kỳ thi tuyển sinh sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 sở GDKHCN Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu Đề tuyển sinh môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu Chào đón quý thầy cô và các em học sinh lớp 9. Đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 - 2023 của sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu: 1. Cho parabol (P): y = x² và đường thẳng (d): y = 3x - 2. Hãy vẽ đồ thị của (P) và tìm tọa độ giao điểm của (P) với đường thẳng (d) dựa trên phép tính. 2. Giải phương trình x² - 5x + m + 2 = 0 (m là tham số): a) Giải phương trình khi m = 2. b) Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt. c) Gọi x₁ và x₂ là hai nghiệm phân biệt của phương trình (1). Tìm giá trị lớn nhất của biểu thức P = x₁ + x₂. 3. Trên nửa đường tròn tâm O đường kính AB = 2R, vẽ điểm C (C khác A và B), kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại E. a) Chứng minh tứ giác BHDE nội tiếp. b) Chứng minh AD∙EC = CD∙AC. c) Khi điểm C di chuyển trên nửa đường tròn (C khác A, B và trung điểm của cung AB), xác định vị trí của điểm C sao cho chu vi tam giác COH lớn nhất.
Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Ninh Bình. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: Tìm tất cả các số nguyên dương $a$ và các số nguyên tố $p$ thỏa mãn $a^2 = 7p^4 + 9$. Cho tam giác $ABC$ (với $AB < AC$) nội tiếp đường tròn $(O)$. Gọi $M$, $N$ lần lượt là trung điểm của các cạnh $AB$, $AC$. Đường thẳng $MN$ cắt $(O)$ tại các điểm $P$, $Q$ ($P$ thuộc cung nhỏ $AB$ và $Q$ thuộc cung nhỏ $AC$). Lấy điểm $D$ trên cạnh $BC$ ($D$ khác $B$ và $D$ khác $C$). Đường tròn ngoại tiếp tam giác $BDP$ cắt $AB$ tại điểm $I$ ($I$ khác $B$). Đường thẳng $DI$ cắt $AC$ tại $K$. Chứng minh rằng tứ giác $AIPK$ nội tiếp. Chứng minh rằng $\frac{PK}{PD} = \frac{QB}{QA}$. Đường thẳng $CP$ cắt đường tròn ngoại tiếp tam giác $BDP$ tại $G$ ($G$ khác $P$). Đường thằng $IG$ cắt đường thẳng $BC$ tại điểm $E$. Chứng minh rằng khi điểm $D$ di chuyển trên cạnh $BC$ thì tỉ số $\frac{CD}{CE}$ không đổi. Cho bảng ô vuông $3 \times 3$ gồm ba dòng và ba cột. Người ta ghi tất cả các số thuộc tập hợp $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ vào các ô vuông của bảng, sao cho tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$ đều bằng nhau. Hãy chỉ ra một cách ghi các số vào bảng thỏa mãn yêu cầu bài toán. Trong tất cả các cách ghi các số vào bảng thỏa mãn yêu cầu bài toán, tìm giá trị lớn nhất của tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$. Hy vọng các em sẽ ôn tập và làm bài thi tốt! Chúc quý thầy cô giáo và các em học sinh thành công!
Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Thuận
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Thuận Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh THPT Môn Toán (Chuyên) Năm 2022-2023 Sở GD&ĐT Bình Thuận Đề Thi Tuyển Sinh THPT Môn Toán (Chuyên) Năm 2022-2023 Sở GD&ĐT Bình Thuận Xin chào quý thầy cô và các em học sinh lớp 9! Trong kỳ thi tuyển sinh vào lớp 10 THPT công lập môn Toán chuyên (hệ số 2) năm học 2022-2023 của sở GD&ĐT Bình Thuận, chúng ta sẽ cùng nhau trải qua những thử thách và cơ hội để thể hiện khả năng và kiến thức của mình. Dưới đây là một số câu hỏi mẫu trong đề thi chính thức: Câu 1: Hai bạn An và Bình đang so sánh số lượng viên bi mà họ hiện có. An nói rằng nếu Bình cho An một số viên bi từ túi của mình, thì An sẽ có số viên bi gấp 6 lần số viên bi của Bình. Ngược lại, nếu An cho Bình số viên bi như vậy, thì số viên bi của Bình sẽ bằng 1/3 số viên bi của An. Hãy tìm số viên bi ít nhất mà bạn An có thể có. Câu 2: Trong tam giác ABC có đường tròn nội tiếp tâm O, tiếp xúc với các cạnh AB, AC tại D và E. Gọi I là tâm đường tròn nội tiếp tam giác ADE. Hãy chứng minh rằng A, I, O thẳng hàng và I thuộc đường tròn (O). Sau đó, chứng minh rằng tứ giác BCMN nội tiếp và tam giác BMC vuông. Câu 3: Người ta viết các số nguyên 1, 2, 3, 4, 5, 6, 7, 8 lên các đỉnh của một bát giác lồi sao cho tổng các số ở mỗi ba đỉnh liên tiếp không nhỏ hơn k (với k là số nguyên dương). Hãy tìm giá trị lớn nhất của k trong trường hợp này. Chúc các em sẽ làm tốt trong kỳ thi sắp tới và đạt được kết quả cao nhất! Hãy tự tin và cố gắng hết mình!
Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Đề thi tuyển sinh chuyên Toán (chuyên) 2022 2023 sở GD ĐT Gia Lai Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Gia Lai. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Gia Lai bao gồm các câu hỏi sau: Tìm một đa thức bậc ba P(x) với hệ số nguyên, biết x là một nghiệm của P(x) và P(1) = -6. Tìm tất cả các số nguyên x, y thỏa mãn phương trình: x^2y^2 – 2x^2y + 3x^2 + 4xy – 4x + 2y^2 – 4y – 1 = 0. Cho tam giác ABC nhọn nội tiếp đường tròn (O), kẻ ba đường cao AD, BE, CF cắt nhau tại H, lấy điểm M trên cung nhỏ BC (M khác B và C). Gọi P là điểm đối xứng với M qua AB. Chứng minh rằng APB = ACB và tứ giác AHBP nội tiếp đường tròn. Chứng minh rằng H là tâm đường tròn nội tiếp tam giác FDE. Tìm giá trị nhỏ nhất của biểu thức T. Hi vọng các em sẽ tự tin và làm tốt trong kỳ thi sắp tới. Chúc các em đạt được kết quả cao trong bài thi sắp tới!