Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trắc nghiệm quan hệ song song trong các đề thi thử Toán 2018

Tài liệu gồm 62 trang tổng hợp câu hỏi và bài tập trắc nghiệm đường thẳng và mặt phẳng trong không gian, quan hệ song song có lời giải chi tiết trong các đề thi thử Toán 2018 của các trường THPT và sở GD – ĐT trên cả nước. Trích dẫn tài liệu Trắc nghiệm quan hệ song song trong các đề thi thử Toán 2018 : + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi I, J lần lượt là trung điểm của các cạnh AD, BC và G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N và P lần lượt là trung điểm của các cạnh SA, BC, CD. Hỏi thiết diện của hình chóp cắt bởi mặt phẳng (MNP) là hình gì? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng? A. d qua S và song song với AB. B. d qua S và song song với BC. C. d qua S và song song với BD. D. d qua S và song song với DC.

Nguồn: toanmath.com

Đọc Sách

121 câu trắc nghiệm quan hệ song song - Nguyễn Quốc Tuấn
Tài liệu gồm 23 trang tuyển chọn 121 câu trắc nghiệm quan hệ song song trong không gian, tài liệu do thầy Nguyễn Quốc Tuấn biên soạn. Trích dẫn tài liệu: 1. Phát biểu nào sau đây là sai? A. Cả 3 câu dưới đều sai. B. Hình thang có thể là hình biểu diễn của một hình bình hành. C. Trọng tâm G của tam giác ABC có hình chiếu song song là trọng tâm G’ của tam giác A’B’C’, trong đó A’B’C’ là hình chiếu song song của tam giác ABC. D. Hình chiếu song song của hai đường chéo nhau có thể là hai đường song song.? [ads] 2. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Điểm M thuộc cạnh SC sao cho SM = 3MC, N là giao điểm của SD và (MAB). Khi đó hình chiếu song song của SM trên mp(ABC) theo phương chiếu SA là? 3. Cho hình chóp S.ABCD có đáy là hình bình hành. Một mp(α) cắt các cạnh SA,SB,SC,SD lần lượt tại các điểm A’,B’,C’,D’ sao cho tứ giác A’B’C’D’ cũng là hình bình hành. Qua S kẻ Sx, Sy lần lượt song song với AB, AD . Gọi O là giao điểm của AC và BD . Khi đó ta có: A. Giao tuyến của (SAC) và (SB’D’) là đường thẳng Sx B. Giao tuyến của (SB’D’) và (SAC) là đường thẳng SO C. Giao tuyến của (SA’B’) và (SC’D’) là đường thẳng Sy D. Giao tuyến của (SA’D’) và (SBC) là đường thẳng SO