Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế Vào ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Thừa Thiên Huế bao gồm 01 trang với 06 bài toán dạng tự luận. Thời gian học sinh làm bài thi là 120 phút. Đề thi có đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi được trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế: Câu 1: Để xây dựng thành phố Huế ngày càng đẹp hơn và khuyến khích người dân rèn luyện sức khỏe, Ủy ban nhân dân tỉnh Thừa Thiên Huế đã cho xây dựng tuyến đường đi bộ ven bờ Bắc sông Hương. Một người đi bộ trên tuyến đường này, khởi hành từ cầu Trường Tiền đến cầu Dã Viên rồi quay về lại cầu Trường Tiền hết tất cả 17/18 giờ. Tính vận tốc của người đó lúc về, biết rằng vận tốc lúc đi lớn hơn vận tốc lúc về là 0,5 km/h. Câu 2: Một chiếc cốc thủy tính có dạng hình trụ, chiều cao bằng 10cm và chứa một lượng nước có thể tích bằng một nửa thể tích của chiếc cốc. Một chiếc cốc thủy tinh khác có dạng hình nón (không chứa gì cả) và có bán kính đáy bằng bán kính đáy chiếc cốc hình trụ đã cho. Tính chiều cao của chiếc cốc có dạng hình nón (bỏ qua bề dày của thành cốc và đáy cốc). Câu 3: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi M là một điểm bất kỳ trên cung nhỏ AC sao cho BCM nhọn (M không trùng A và C). Gọi E và F lần lượt là chân các đường vuông góc kẻ từ M đến BC và AC. Chứng minh rằng: a) Tứ giác MFEC nội tiếp. b) Tam giác FEM và tam giác ABM đồng dạng. c) MA.MQ = MP.MF và góc PQM = 90 độ. Đây là một số câu hỏi thú vị và phù hợp để học sinh thử sức và phát triển khả năng tư duy toán học. Chúc các em thành công trong kỳ thi tuyển sinh!

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh vào lớp 10 THPT 2018 - 2019 sở GD và ĐT Bắc Giang
THCS. giới thiệu đến thầy, cô và các em học sinh đề Toán tuyển sinh vào lớp 10 THPT 2018 – 2019 sở GD và ĐT Bắc Giang, đề thi gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 06/06/2018 nhằm giúp đánh giá và phân loại năng lực học sinh, để từ đó các trường THPT tại tỉnh Bắc Giang có cơ sở để tuyển sinh khối lớp 10 chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 THPT 2018 - 2019 sở GD và ĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em học sinh đề Toán tuyển sinh lớp 10 THPT 2018 – 2019 sở GD và ĐT Bắc Ninh, đề thi gồm 6 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận với tỉ lệ điểm số là 3 : 7, kỳ thi nhằm giúp đánh giá và phân loại năng lực học sinh, để từ đó các trường THPT tại tỉnh Bắc Ninh có cơ sở để tuyển sinh khối lớp 10 chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Hải Dương
Đề tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương được biên soạn nhằm đánh giá và phân loại học sinh lớp 9 theo năng lực học Toán, để từ đó các trường THPT tại tỉnh Hải Dương có cơ sở tuyển chọn các em vào lớp 10 theo tiêu chí của trường, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 môn Toán năm 2018 - 2019 sở GD và ĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở GD và ĐT Tiền Giang gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi diễn ra vào ngày 05/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở Tiền Giang : + Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. [ads] + Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. + Cho phương trình x^2 – 2x – 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.