Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề thi học kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam Đề thi học kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam Đề thi học kỳ 1 môn Toán lớp 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam bao gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam: + Đề bài cho nửa đường tròn tâm O có bán kính R, đường kính AB. Xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. + Giải phương trình: x2 – 1 = 2√(2x + 1). + Tính giá trị nhỏ nhất của biểu thức: P = a2 + b2 + 2020/(√a + √b)^2 với a, b là số thực dương thỏa mãn a – √a = √b – b. Đề thi còn bao gồm các bài toán khác với nhiều yêu cầu khác nhau, đòi hỏi học sinh phải nắm vững lý thuyết và có khả năng áp dụng linh hoạt để giải quyết vấn đề. Thí sinh cần chú ý đến từng yếu tố chi tiết trong đề bài và áp dụng kiến thức để giải quyết bài toán một cách chính xác. Đề thi học kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam được xem là một thách thức đối với học sinh, đòi hỏi họ phải tự tin, kiên trì và sáng tạo để đạt kết quả tốt nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Tứ Kỳ - Hải Dương
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Tứ Kỳ – Hải Dương gồm 5 bài toán tự luận, thoiwfgian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : + Cho hàm số bậc nhất: y = (k – 2)x + k^2 – 2k; (k là tham số) 1. Vẽ đồ thị hàm số khi k = 1. 2. Tìm k để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2. + Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. 1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH. [ads] 2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D. a) Chứng minh BD là tiếp tuyến của đường tròn (C). b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2√PE.QF = EF
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Tam Đảo - Vĩnh Phúc
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Tam Đảo – Vĩnh Phúc gồm 6 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O, R) và đường thẳng d cố định không cắt đường tròn. Từ một điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB. a) Chứng minh C thuộc đường tròn (O, R) và AC là tiếp tuyến của (O, R). b) Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. Chứng minh OH.OA = OI.OK = R^2 a) Chứng minh tam giác BHO = tam giác CHO (2 cạnh góc vuông) Suy ra OB = OC Suy ra OC = R Suy ra C thuộc (O, R). Chứng minh tam giác ABO = tam giác ACO (c.g.c) Suy ra góc ABO = góc ACO Mà AB là tiếp tuyến của (O, R) nên AB ⊥ BO Suy ra góc ABO = 90 độ, suy ra góc ACO = 90 độ Nên AC vuông góc với CO Do đó AC là tiếp tuyến của (O, R). [ads] b) Chứng minh: Tam giác OHK đồng dạng với tam giác OIA Suy ra OH/OI = OK/OA, suy ra OH.OA = OI.OK Tam giác ABO vuông tại B có BH vuông góc với BO Suy ra BO^2 = OH.OA = OH = R^2 Vậy OH.OA = OI.OK = R^2
Đề thi học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Gò Vấp - TP. HCM
Đề thi học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Gò Vấp – TP. HCM gồm 7 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O; R). Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC của (O) (B và C là các tiếp điểm); OA cắt BC tại H. a) Chứng minh OA là đường trung trực của đoạn BC và OH.OA = R^2 b) Vẽ đường kính CD của (O), AD cắt (O) tại điểm E khác D, BC cắt DE tại K, EC cắt OA tại V, tia KV cắt AC tại M. Chứng minh CE ⊥ AK và V là trung điểm của đoạn KM. c) Vẽ đường thẳng OT vuông góc với DE tại T, OT cắt đường thẳng BC tại Q. Chứng minh QD là tiếp tuyến của đường tròn (O). Giải: a) OA là đường trung trực của đoạn BC Ta có AB = AC ( tính chất 2 tiếp tuyến cắt nhau) OB = OC = R Vậy OA là đường trung trực của BC ⇒ OA ⊥ BC tại H và HB = HC Chứng minh OH.OA = R^2 AB , AC là tiếp tuyến với (O) tại B và C ⇒ AB ⊥ OB và AC ⊥ OB Xét △OAB vuông tại B , BH⊥OA , ta có OB^2 = OH.OA =R^2 (hệ thức lượng trong tam giác vuông) [ads] b) CE⊥ AKV là trung điểm của đoạn KM Ta có △CDE nội tiếp đường tròn (O) có cạnh CD là đường kính Vậy △CDE vuông tại E ⇒ CE ⊥ DE hay CE ⊥ AK Chứng minh V là trung điểm của đoạn KM Do CE ⊥ AK và AH ⊥ CK (vì OA ⊥ BC) ⇒ V là trực tâm của △ACK ⇒ KV ⊥ AC tại M và CD ⊥ AC ⇒ KM//CD KV//OD ⇒ KV/OD = AV/AO (hệ quả định lí Talet) VM//OC ⇒ VM/OC = AV/AO (hệ quả định lí Talet) ⇒ KV/OD = VM/OC ⇒ KV = VM (vì OD = OC = R) Vậy V là trung điểm của KM c) QD là tiếp tuyến của đường tròn (O) Xét △OBQ vuông tại H và △OTA vuông tại T, ta có: ∠O chung ⇒ △OBQ ∽ △OTA (g.g) ⇒ OT.OQ = OH.OA Vì OD^2 = OB^2 = OH.OA ⇒ OD^2 = OT.OQ ⇒ △ODQ ∽ △OTD (c.g.c) ⇒ ∠ODQ = ∠OTD = 90° ⇒ DQ ⊥ OD Mà OD = R ⇒ QD là tiếp tuyến với (O) tại D
Đề thi HKI Toán 9 năm học 2017 - 2018 phòng GD và ĐT Nam Từ Liêm - Hà Nội
Đề thi HKI Toán 9 năm học 2017 – 2018 phòng GD và ĐT Nam Từ Liêm – Hà Nội gồm 4 câu hỏi trắc nghiệm (chiếm 1 điểm) và 5 bài toán tự luận (chiếm 9 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : + Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M. a) Cho biết bán kính R = 5cm, OM = 3cm. Tính độ dài dây EH. b) Chứng minh: AH là tiếp tuyến của đường tròn (O). c) Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O) (F là tiếp điểm). Chứng minh: 3 điểm E, O, F thẳng hàng và BF.AE = R^2. d) Trên tia HB lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh: AE = DQ. [ads] + Cho hàm số y = (m – 4)x + 4 có đồ thị là đường thẳng d (m khác 4) a) Tìm m để đồ thị hàm số đi qua A(1;6). b) Vẽ đồ thị hàm số với m vừa tìm được ở câu a. Tính góc tạo bởi đồ thị hàm số vừa vẽ với trục Ox (làm tròn đến phút). c) Tìm m để đường thẳng (d) song song với đường thẳng (d1): y = (m – m^2)x + m + 2 + Cho tam giác MNP vuông tại M, đường cao MH. Chọn hệ thức sai: A. MH^2 = HN.HB B. MP^2 = NH.HP C. MH.NP = MN.MP D. 1/MN^2 + 1/MP^2 = 1/MH^2