Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Hoàng Việt

Tài liệu gồm 138 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3. MỤC LỤC : Chương 3 . NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 1. §1 – TÍNH NGUYÊN HÀM – SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC 1. A KIẾN THỨC CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Áp dụng bảng công thức nguyên hàm 2. + Dạng 2. Tách hàm dạng tích thành tổng 7. + Dạng 3. Tách hàm dạng phân thức thành tổng 9. C BÀI TẬP TỰ LUYỆN 14. §2 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 17. A CÁC DẠNG TOÁN THƯỜNG GẶP 17. + Dạng 1. Đổi biến dạng hàm lũy thừa 17. + Dạng 2. Đổi biến dạng hàm phân thức 19. + Dạng 3. Đổi biến dạng hàm vô tỉ 20. + Dạng 4. Đổi biến dạng hàm lượng giác 22. + Dạng 5. Đổi biến dạng hàm mũ, hàm lô-ga-rit 24. B BÀI TẬP TỰ LUYỆN 27. §3 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 30. A CÁC DẠNG TOÁN THƯỜNG GẶP 30. + Dạng 1. Nguyên hàm từng phần với “u = đa thức” 30. + Dạng 2. Nguyên hàm từng phần với “u = lôgarit” 31. + Dạng 3. Nguyên hàm kết hợp đổi biến số và từng phần 33. + Dạng 4. Nguyên hàm từng phần dạng “lặp” 35. + Dạng 5. Nguyên hàm từng phần dạng “hàm ẩn” 36. B BÀI TẬP TỰ LUYỆN 38. §4 – TÍNH TÍCH PHÂN – SỬ DỤNG ĐỊNH NGHĨA, TÍNH CHẤT 41. A CÁC DẠNG TOÁN THƯỜNG GẶP 41. + Dạng 1. Sử dụng định nghĩa, tính chất tích phân 41. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản 45. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản 47. B BÀI TẬP TỰ LUYỆN 51. §5 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 54. A CÁC DẠNG TOÁN THƯỜNG GẶP 54. + Dạng 1. Đổi biến loại t = u(x) 54. + Dạng 2. Lượng giác hóa 59. B BÀI TẬP TỰ LUYỆN 61. §6 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN 65. A CÁC DẠNG TOÁN THƯỜNG GẶP 65. + Dạng 1. Tích phân từng phần với “u = đa thức” 65. + Dạng 2. Tích phân từng phần với “u = logarit” 67. B BÀI TẬP TỰ LUYỆN 70. §7 – TÍCH PHÂN HÀM ẨN 74. A CÁC DẠNG TOÁN THƯỜNG GẶP 74. + Dạng 1. Sử dụng tính chất tính phân không phụ thuộc biến 74. + Dạng 2. Tìm hàm f(x) bằng phương pháp đổi biến số 76. + Dạng 3. Tìm hàm f(x) bằng phương pháp đưa về “đạo hàm đúng” 77. + Dạng 4. Phương pháp tích phân từng phần 79. + Dạng 5. Phương pháp ghép bình phương 81. B BÀI TẬP TỰ LUYỆN 84. §8 – ỨNG DỤNG TÍCH PHÂN – TÍNH DIỆN TÍCH HÌNH PHẲNG 89. A CÁC DẠNG TOÁN THƯỜNG GẶP 89. + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x) 89. + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số 97. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế 99. B BÀI TẬP TỰ LUYỆN 103. §9 – ỨNG DỤNG TÍCH PHÂN – TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY 107. A CÁC DẠNG TOÁN THƯỜNG GẶP 107. + Dạng 1. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox 107. + Dạng 2. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox 108. + Dạng 3. Tọa độ hóa một số bài toán thực tế 113. B BÀI TẬP TỰ LUYỆN 117. §10 – ỨNG DỤNG TÍCH PHÂN – MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG 120. A CÁC DẠNG TOÁN THƯỜNG GẶP 120. + Dạng 1. Cho hàm vận tốc, tìm quãng đường di chuyển của vật 120. + Dạng 2. Cho đồ thị hàm vận tốc, tìm quãng đường di chuyển của vật 121. + Dạng 3. Cho hàm gia tốc, tìm quãng đường di chuyển của vật 122. B BÀI TẬP TỰ LUYỆN 124. §11 – ĐỀ TỔNG ÔN 126. A ĐỀ SỐ 1 126. B ĐỀ SỐ 2 129.

Nguồn: toanmath.com

Đọc Sách

Nguyên hàm và các phương pháp tìm nguyên hàm - Trần Văn Tài
Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm được biên soạn bởi thầy Trần Văn Tài gồm 70 trang tóm tắt các lý thuyết và tính chất của nguyên hàm, phân dạng toán, hướng dẫn phương pháp tìm nguyên hàm và tuyển chọn các bài tập trắc nghiệm nguyên hàm có đáp án giúp học sinh học tốt nội dung kiến thức nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3). Khái quát nội dung tài liệu nguyên hàm và các phương pháp tìm nguyên hàm – Trần Văn Tài: A. Khái niệm nguyên hàm và tính chất của nguyên hàm . + Trình bày khái niệm và tính chất của nguyên hàm. + Bảng nguyên hàm một số hàm số thường gặp (với C là hằng số tùy ý). + Một số lưu ý cần nắm: 1. Cần nắm vững bảng nguyên hàm. 2. Nguyên hàm của một tích (thương) của nhiều hàm hàm số không bao giờ bằng tích (thương) của các nguyên hàm của những hàm thành phần. 3. Muốn tìm nguyên hàm của một hàm số, ta phải biến đổi hàm số này thành một tổng hoặc hiệu của những hàm số tìm được nguyên hàm (dựa vào bảng nguyên hàm). B. Các dạng toán nguyên hàm thường gặp và phương pháp tìm nguyên hàm . Dạng toán 1 . TÍNH NGUYÊN HÀM BẰNG BẢNG NGUYÊN HÀM 1. Tích của đa thức hoặc lũy thừa → khai triển. 2. Tích các hàm mũ → khai triển theo công thức mũ. 3. Chứa căn → chuyển về lũy thừa. 4. Tích lượng giác bậc một của sin và cosin → khai triển theo công thức tích thành tổng. 5. Bậc chẵn của sin và cosin → hạ bậc. [ads] Dạng toán 2 . TÍNH NGUYÊN HÀM CỦA HÀM SỐ HỮU TỶ 1. Nếu bậc của tử số P(x) ≥ bậc của mẫu số Q(x) → Chia đa thức. 2. Nếu bậc của tử số P(x) < bậc của mẫu số Q(x) → Xem xét mẫu số và khi đó: + Nếu mẫu số phân tích được thành tích số, ta sẽ sử dụng đồng nhất thức để đưa về dạng tổng của các phân số. + Nếu mẫu số không phân tích được thành tích số (biến đổi và đưa về dạng lượng giác). Dạng toán 3 . TÍNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 1. Đổi biến số dạng 1: t = φ(x). 2. Đổi biến số dạng 2: x = φ(t). Dạng toán 4 . TÍNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN + Nhận dạng: Tích 2 hàm khác loại nhân với nhau. + Thứ tự ưu tiên chọn u: log – đa – lượng – mũ và dv = phần còn lại. Nghĩa là nếu có In hay log thì chọn u = ln hay u = log và dv = còn lại. Nếu không có ln, log thì chọn u = đa thức và dv = còn lại. Nếu không có log, đa thức, ta chọn u = lượng giác … + Lưu ý rằng bậc của đa thức và bậc của In tương ứng với số lần lấy nguyên hàm. + Dạng mũ nhân lượng giác là dạng nguyên hàm từng phần luân hồi.
Các phương pháp xác định nguyên hàm - Lê Bá Bảo
Tài liệu gồm 41 trang hướng dẫn các phương pháp tìm nguyên hàm của hàm số với các ví dụ minh họa và bài tập trắc nghiệm tự luyện. I – Tổng quan lý thuyết 1. Nguyên hàm 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm 4. Bảng nguyên hàm của một số hàm số sơ cấp II – Phương pháp tính nguyên hàm [ads] III – Bài tập tự luận minh họa + Một số phép biến đổi cơ bản + Nguyên hàm các hàm số phân thức + Nguyên hàm từng phần + Đổi biến + Dùng vi phân IV – Bài tập trắc nghiệm minh họa V – Bài tập trắc nghiệm tự luyện
109 bài toán trắc nghiệm nguyên hàm - Trần Công Diêu
Tài liệu gồm 24 trang với 109 bài tập trắc nghiệm nguyên hàm do thầy Trần Công Diêu sưu tầm và biên soạn. Trích dẫn tài liệu : + Mệnh dề nào sau đây sai? A. Nếu F(x) là một nguyên hàm của f(x) trên (a; b) và C là hằng số thì ∫f(x) = F(x) + C B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b) C. F(x) là một nguyên hàm của f(x) trên (a; b) ⇔ F'(x) = f(x) ∀x ∈ (a; b) D. (∫f(x)dx)’ = f(x) + Xét hai khẳng định sau: (I) Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó (II) Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó [ads] Trong hai khẳng định trên: A. Chỉ có (I) đúng B. Chỉ có (II) đúng C. Cả hai đều đúng D. Cả hai đều sai + Hàm số f(x) có nguyên hàm trên K nếu: A. f(x) xác định trên K B. f(x) có giá trị lớn nhất trên K C. f(x) có giá trị nhỏ nhất trên K D. f(x) liên tục trên K
Chuyên đề các phương pháp tính tích phân - Nguyễn Duy Khôi
Ngày nay phép tính vi tích phân chiếm một vị trí hết sức quan trọng trong Toán học, tích phân được ứng dụng rộng rãi như để tính diện tích hình phẳng, thể tích khối tròn xoay, nó còn là đối tượng nghiên cứu của giải tích, là nền tảng cho lý thuyết hàm, lý thuyết phương trình vi phân, phương trình đạo hàm riêng… Ngoài ra phép tính tích phân còn được ứng dụng rộng rãi trong Xác suất, Thống kê, Vật lý, Cơ học, Thiên văn học, Y học … Phép tính tích phân được bắt đầu giới thiệu cho các em học sinh ở lớp 12, tiếp theo được phổ biến trong tất cả các trường đại học cho khối sinh viên năm thứ nhất và năm thứ hai trong chương trình học đại cương. Hơn nữa trong các kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học phép tính tích phân hầu như luôn có trong các đề thi môn Toán của khối A, khối B và cả khối D. Bên cạnh đó, phép tính tích phân cũng là một trong những nội dung để thi tuyển sinh đầu vào hệ Thạc sĩ và nghiên cứu sinh. [ads] Với tầm quan trọng của phép tính tích phân, chính vì thế mà tôi viết một số kinh nghiệm giảng dạy tính tích phân của khối 12 với chuyên đề “TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHÂN TÍCH – ĐỔI BIẾN SỐ VÀ TỪNG PHẦN” để phần nào củng cố, nâng cao cho các em học sinh khối 12 để các em đạt kết quả cao trong kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học và giúp cho các em có nền tảng trong những năm học đại cương của đại học. Trong phần nội dung chuyên đề dưới đây, tôi xin được nêu ra một số bài tập minh họa cơ bản tính tích phân chủ yếu áp dụng phương pháp phân tích, phương pháp đổi biến số, phương pháp tích phân từng phần. Các bài tập đề nghị là các đề thi Tốt nghiệp THPT và đề thi tuyển sinh đại học Cao đẳng của các năm để các em học sinh rèn luyện kỹ năng tính tích phân và phần cuối của chuyên đề là một số câu hỏi trắc nghiệm tích phân. Tuy nhiên với kinh nghiệm còn hạn chế nên dù có nhiều cố gắng nhưng khi trình bày chuyên đề này sẽ không tránh khỏi những thiếu sót, rất mong được sự góp ý chân tình của quý Thầy Cô trong Hội đồng bộ môn Toán Sở Giáo dục và đào tạo tỉnh Đồng Nai. Nhân dịp này tôi xin cảm ơn Ban lãnh đạo nhà trường tạo điều kiện tốt cho tôi và cảm ơn quý thầy cô trong tổ Toán trường Nam Hà, các đồng nghiệp, bạn bè đã đóng góp ý kiến cho tôi hoàn thành chuyên đề này. Tôi xin chân thành cám ơn.