Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường THPT Hồ Nghinh - Quảng Nam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường THPT Hồ Nghinh, tỉnh Quảng Nam; đề thi có đáp án mã đề 101 103 105 107 109 111 113 115 117 119 121 123 102 104 106 108 110 112 114 116 118 120 122 124. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường THPT Hồ Nghinh – Quảng Nam : + Nhằm tạo môi trường xanh, sạch, đẹp và thân thiện. Đoàn trường THPT Hồ Nghinh đã phát động phong trào trồng hoa toàn bộ khuôn viên đường vào trường. Sau một ngày thực hiện đã trồng được một phần diện tích. Nếu tiếp tục với tiến độ như vậy thì dự kiến sau đúng 15 ngày nữa sẽ hoàn thành. Nhưng thấy công việc có ý nghĩa nên mỗi ngày số lượng đoàn viên tham gia đông hơn vì vậy từ ngày thứ hai mỗi ngày diện tích trồng tăng lên 3% so với ngày kế trước. Hỏi công việc sẽ hoàn thành vào ngày bao nhiêu? Biết rằng ngày 26 / 03 là ngày bắt đầu thực hiện và làm liên tục. + Một học sinh nộp hồ sơ xét học bạ ở một trường Đại Học X với ba nguyện vọng xét tuyển. Theo tiêu chí xét tuyển thì đỗ nguyện vọng 1 sẽ không xét tuyển nguyện vọng 2 và 3; đỗ nguyện vọng 2 thì không xét tuyển nguyện vọng 3. Tính xác suất để học sinh đó đỗ vào trường X biết xác suất đỗ nguyện vọng 1 là 30%, xác suất đỗ nguyện vọng 2 là 40%, xác suất đỗ nguyện vọng 3 là 70%. + Một khối nón có chiều cao bằng 12, đặt trên đáy một hình trụ (các đáy của chúng nằm trên cùng một mặt phẳng, như hình vẽ bên dưới), biết đường kính đáy khối nón bằng bán kính đáy hình trụ. Hình trụ được đổ nước vào cho đến độ cao bằng 12. Độ cao của nước khi đã lấy khối nón ra ngoài hình trụ bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2022 môn Toán lần 4 trường Lương Thế Vinh - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT Quốc gia năm học 2021 – 2022 môn Toán lần 4 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội (mã đề 101). Trích dẫn đề thi thử THPT Quốc gia 2022 môn Toán lần 4 trường Lương Thế Vinh – Hà Nội : + Cho hàm số y f x liên tục trên R và có bảng biến thiên như sau: x 1 0 1 y 0 0 0 y 3 2 1. Gọi S là tập các giá trị nguyên của tham số m để bất phương trình 2 2 2 4 6 1 9 5 4 2 f x f x f x f x f x m m nghiệm đúng với mọi x. Tính tổng các phần tử của S. + Cho hình chóp đều S ABCD có cạnh đáy bằng 4a cạnh bên bằng 2 3a và O là tâm của đáy. Gọi M N P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD và SDA. Thể tích của khối chóp O MNPQ bằng? + Cho hai hàm số 4 3 2 y x x x x y x x x m x 6 5 11 6 2 3 có đồ thị lần lượt là C C 1 2. Có bao nhiêu giá trị nguyên m thuộc đoạn [-2022;2022] để C1 cắt C2 tại 4 điểm phân biệt? A. 2022. B. 2023. C. 4044. D. 2021.
Đề thi thử Toán TN THPT 2022 lần 2 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2022 lần 2 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022. Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường chuyên Lê Khiết – Quảng Ngãi : + Trong không gian Oxyz cho mặt cầu 22 2 1 1 2 25 Sx y z và đường thẳng 434 1 22 xyz d. Gọi M abc b 0 là một điểm trên d và MA MB là 2 tiếp tuyến với mặt cầu S vuông góc với d vẽ từ M (A B là các tiếp điểm). Khi diện tích tam giác MAB lớn nhất thì abc bằng? + Cho hai hàm số 432 f x ax bx cx dx e và 3 2 g x qx px rx t các hàm số f x g x có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx và y gx bằng 24 và f g 4 4. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx và y gx bằng? + Trên tập hợp các số phức, phương trình 2 2 z m zm 2 1 2 0 (m là tham số thực) có 2 nghiệm 1 2 z z 1 2 z z. Gọi M N lần lượt là các điểm biểu diễn của 1z và 2 z trong mặt phẳng tọa độ Oxy. Có bao nhiêu giá trị nguyên của m để diện tích tam giác?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Đắk Nông
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Đắk Nông; đề thi mã đề 001 gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Đắk Nông : + Cho hàm số y f x có đạo hàm liên tục trên R. Hàm số y f x có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m 2022 2022 để hàm số 2 g x f x f x m 2 3 có đúng 5 điểm cực trị, biết phương trình f x 0 có đúng 2 nghiệm phân biệt f a f b 1 0 lim x f x và lim x f x. + Một đội thanh niên tình nguyện của trường gồm có 6 học sinh nam và 5 học sinh nữ. Chọn ngẫu nhiên 4 học sinh để cùng các giáo viên tham gia đo thân nhiệt cho học sinh khi đến trường. Xác suất để chọn được 4 học sinh trong đó số học sinh nam bằng số học sinh nữ bằng? + Cho hai hàm số 3 2 3 4 f x ax bx cx và 2 3 4 g x dx ex a b c d e. Biết rằng đồ thị của hàm số y f x và y g x cắt nhau tại ba điểm có hoành độ lần lượt là -2; 1; 3 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng?
Đề thi thử TN THPT năm 2022 môn Toán lần 2 sở GDKHCN Bạc Liêu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2022 môn Toán lần 2 sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu (mã đề 102). Trích dẫn đề thi thử TN THPT năm 2022 môn Toán lần 2 sở GDKHCN Bạc Liêu : + Cho hình trụ tròn xoay có đáy là hai hình tròn tâm O và O’. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O’ lấy điểm B sao cho AB = 2a. Biết khoảng cách từ trục của hình trụ đến đường thẳng AB bằng a/2 và bán kính đáy của hình trụ bằng a, thể tích của khối trụ đã cho bằng? + Cho hàm số bậc ba y = f(x) = ax3 – 1/2×2 + cx + d và parabol y = g(x) có đỉnh nằm trên trục tung. Biết đồ thị y = f(x) và y = g(x) cắt nhau tại ba điểm phân biệt A; B; C có hoành độ lần lượt là -2; 1; 2 và thỏa mãn AB (tham khảo hình vẽ). + Trên tập hợp các số phức, xét phương trình z2 – 2z + m + 1 = 0 (m là tham số thực). Gọi A và B là hai điểm biểu diễn hai nghiệm phân biệt z1 và z2 của phương trình. Tổng các giá trị của tham số m để tam giác OAB vuông bằng?