Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 11 lần 2 năm 2018 - 2019 trường THPT Lê Xoay - Vĩnh Phúc

Tuần qua, trường THPT Lê Xoay, tỉnh Vĩnh Phúc đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán 11 lần 2 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề khảo sát Toán 11 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc  có mã đề 132, đề gồm 05 trang được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, kỳ thi nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 11 theo từng giai đoạn để thúc đẩy nâng cao chất lượng học tập. Trích dẫn đề khảo sát Toán 11 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc : + Một hình vuông ABCD có cạnh bằng 1, có diện tích là S1. Nối bốn trung điểm A1, B1, C1, D1 lần lượt của bốn cạnh AB, BC, CD, DA ta được hình vuông A1B1C1D1 có diện tích là S2. Tương tự nối bốn trung điểm A2, B2, C2. D2 lần lượt của bốn cạnh A1B1, B1C1, C1D1, D1A1 ta được hình vuông A2B2C2D2 có diện tích là S3. Cứ tiếp tục như vậy ta thu được các diện tích S4, S5, S6 …. Tính lim(S1 + S2 + … + Sn)? [ads] + Từ hai vị trí A, B của một tòa nhà, người ta quan sát đỉnh C của một ngọn núi. Biết rằng A là điểm nằm phía chân của tòa nhà tiếp xúc với mặt đất, B là điểm nằm trên nóc của tòa nhà, phương AB vuông góc với mặt đất, khoảng cách AB là 70(m), phương nhìn AC tạo với phương nằm ngang góc 30 độ, phương nhìn BC tạo với phương nằm ngang góc 15 độ 30 phút. Hỏi ngọn núi đó cao bao nhiêu mét so với mặt đất (làm tròn đến hàng phần trăm)? + Nhà bạn An cần khoan một cái giếng nước. Biết rằng giá tiền của mét khoan đầu tiên là 200.000đ và kể từ mét khoan thứ hai, giá tiền của mỗi mét sau tăng thêm 7% so với giá tiền của mét khoan ngay trước nó. Hỏi nếu nhà bạn An khoan cái giếng sâu 30m thì hết bao nhiêu tiền (làm tròn đến hàng nghìn)?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 11 lần 2 năm 2019 - 2020 trường Tam Dương - Vĩnh Phúc
Ngày … tháng 01 năm 2020, trường THPT Tam Dương, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát kiến thức THPT môn Toán 11 lần 2 năm học 2019 – 2020. Đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc mã đề 123 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc : + Xét phép thử gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Gọi X là biến cố “Lần đầu xuất hiện mặt 6 chấm” và Y là biến cố “Lần thứ hai xuất hiện mặt 6 chấm”. Trong các khẳng định sau, khẳng định nào sai? A. X ∩ Y là biến cố “Tổng số chấm xuất hiện của hai lần gieo bằng 12”. B. X và Y là hai biến cố xung khắc. C. X ∪ Y là biến cố “Ít nhất một lần xuất hiện mặt 6 chấm”. D. X và Y là hai biến cố độc lập. + Trong hội chợ, một công ty sơn muốn xếp 1089 hộp sơn theo số lượng 1, 3, 5 … từ trên xuống dưới (số hộp sơn trên mỗi hàng xếp từ trên xuống dưới là các số lẻ liên tiếp – mô hình như hình bên dưới). Hàng cuối cùng có bao nhiêu hộp sơn? [ads] + Xét một bảng ô vuông gồm 4 x 4 ô vuông. Người ta điền vào mỗi ô vuông đó một trong hai số 1 hoặc −1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách? + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD), cạnh AB = 3a, AD = CD = a. Tam giác SAB cân tại S, SA = 2a. Mặt phẳng (P) song song với SA, AB cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. Đặt AM = x (0 < x < a). Gọi x là giá trị để tứ giác MNPQ ngoại tiếp được đường tròn, bán kính đường tròn đó là? + Cho hai đường thẳng chéo nhau a và b. Lấy các điểm phân biệt A, B thuộc a, C, D thuộc b. Khẳng định nào sau đây đúng? A. AD cắt BC. B. AD và BC cùng nằm trên một mặt phẳng. C. AD song song với BC. D. AD chéo BC.
Đề khảo sát Toán 11 lần 1 năm 2019 - 2020 trường Thuận Thành 1 - Bắc Ninh
Ngày … tháng 01 năm 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát Toán 11 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh mã đề 132 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485. Trích dẫn đề khảo sát Toán 11 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Để trang trí cho quán trà sữa sắp mở cửa của mình, bạn Giang quyết định tô màu một mảng tường hình vuông cạnh bằng 2m. Phần tô màu dự kiến là các hình vuông nhỏ được đánh số lần lượt là 1, 2, 3 ….. n (các hình vuông được tô màu chấm bi), trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (hình vẽ). Giả sử quá trình tô màu của Giang có thể diễn ra nhiều giờ. Hỏi bạn Giang tô màu đến hình vuông thứ mấy thì diện tích của hình vuông được tô bắt đầu nhỏ hơn. + Công ty A chuyên sản xuất một loại sản phẩm, bộ phận sản xuất ước tính rằng với q sản phẩm được sản xuất một tháng thì tổng chi phí sẽ là C(q) = 3q^2 + 64q – 9999 (đơn vị tiền tệ). Giá của mỗi sản phẩm được công ty bán với giá R(q) = 160 – 3q. Hãy xác định số sản phẩm công ty A cần sản xuất trong một tháng (giả sử công ty này bán hết được số sản phẩm mình làm ra) để thu về lợi nhuận cao nhất? [ads] + Trường THPT Thuận Thành 1, tỉnh Bắc Ninh tổ chức trao thưởng cho học sinh nghèo vượt khó. Trường chuẩn bị các phần thưởng là 11 quyển sổ, 10 cặp sách và 9 hộp bút (các sản phẩm cùng loại và giống nhau). Nhà trường chọn 15 học sinh để trao phần thưởng sao cho mỗi học sinh đều nhận được hai phần thưởng khác loại, trong số đó có bạn An và Bình. Tính xác suất để An và Bình nhận được phần thưởng giống nhau. + Cho tứ diện ABCD, gọi E, F lần lượt là trung điểm của AB, CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng ACD là? A. Giao điểm của đường thẳng EG và CD. B. Giao điểm của đường thẳng EG và AC. C. Giao điểm của đường thẳng EG và AF. D. Điểm F. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G1, G2 lần lượt là trọng tâm của các tam giác SAB và SAD. Khi đó đường thẳng G1G2? A. cắt mặt phẳng (ABCD). B. song song với mặt phẳng (SCD). C. song song với mặt phẳng (SBC). D. song song với mặt phẳng (ABCD).
Đề thi thử Toán 11 THPT QG 2019 - 2020 lần 1 trường Yên Phong 1 - Bắc Ninh
Nhằm giúp học sinh khối 11 sớm được rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia năm 2021, vừa qua, trường THPT Yên Phong số 1, tỉnh Bắc Ninh tổ chức kỳ thi thử THPT Quốc gia môn Toán 11 năm học 2019 – 2020 lần thứ nhất. Đề thi thử Toán 11 THPT QG năm học 2019 – 2020 lần 1 trường THPT Yên Phong số 1 – Bắc Ninh mã đề 668 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung kiểm tra thuộc chương trình Toán 10 và Toán 11 học sinh đã được học, đề thi có đáp án. Trích dẫn đề thi thử Toán 11 THPT QG 2019 – 2020 lần 1 trường Yên Phong 1 – Bắc Ninh : + Cho phép thử T với không gian mẫu Ω và A, B là hai biến cố liên quan đến T. Mệnh đề nào sau đây sai? A. Nếu A và B xung khắc thì P(A ∪ B) = P(A) + P(B). B. Nếu A và B đối nhau thì A và B xung khắc. C. Nếu A và B độc lập thì P(A.B) = P(A).P(B) D. Nếu A và B xung khắc thì A và B đối nhau. + Năm nay, bạn Minh đang học lớp 11. Hết học kỳ 1, bạn đạt kết quả học tập tốt, nên đầu tháng 1/2020, bố bạn quyết định mang số tiền dành dụm 100 triệu đồng mang ra ngân hàng gửi tiết kiệm để chuẩn bị sang năm cho bạn đi học Đại học Biết rằng, tiền gửi ngân hàng được tính theo hình thức lãi kép, với lãi suất không kỳ hạn là 0,6%/tháng (lãi được nhập vào gốc sau mỗi tháng). Hỏi nếu hết tháng 8/2021, bố bạn đi rút tiền ngân hàng, sẽ rút được bao nhiêu tiền? (kết quả làm tròn đến hàng trăm nghìn). A. 110.900.000 đồng. B. 112.000.000 đồng. C. 113.300.000 đồng. D. 112.700.000 đồng. [ads] + Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AB, AD. Gọi d là giao tuyến của hai mặt phẳng (BCD) và (CMN). Chọn khẳng định sai? A. MN, BD, d là ba đường thẳng đồng quy. B. d // MN. C. d // BD. D. d đi qua C. + Đề kiểm tra trắc nghiệm môn Toán 11 gồm 25 câu, mỗi câu có bốn phương án trả lời trong đó có duy nhất một phương án đúng. Trả lời đúng mỗi câu được 0.4 điểm, trả lời sai không có điểm cho câu đó. Một học sinh không học bài nên làm bài bằng cách chọn ngẫu nhiên một phương án trả lời cho mỗi câu hỏi. Biết rằng có 3 câu bạn đó đã chắc chắn đã loại được một phương án sai. Xác suất để bạn đó được 2 điểm gần nhất với số nào sau đây? + Trong các khẳng định sau, hãy chọn khẳng định đúng? A. Trong không gian, hai đường thẳng cùng cắt một đường thẳng khác thì cắt nhau. B. Trong không gian, hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. C. Trong không gian, hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. D. Trong không gian, hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau.
Đề thi chuyên đề Toán 11 lần 2 năm 2019 - 2020 trường Ngô Gia Tự - Vĩnh Phúc
Ngày … tháng 01 năm 2019, trường THPT Ngô Gia Tự – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán 11 lần thứ hai năm học 2019 – 2020. Đề thi chuyên đề Toán 11 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc gồm có 02 trang với 12 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài 120 phút, đề thi có đáp án. Trích dẫn đề thi chuyên đề Toán 11 lần 2 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi d là giao tuyến của hai mặt phẳng (SAB) và (SCD). Khi đó khẳng định nào sau đây là đúng? A. Đường thẳng d đi qua S và song song với AB và CD. B. Đường thẳng d đi qua S và song song với AD và BC. C. Đường thẳng d trùng với đường thẳng SO. D. Đường thẳng d nằm trong mặt phẳng ABCD. + Mệnh đề nào sau đây sai? A. Hàm số y = cos x có tập xác định là R. B. Hàm số y = tan x là hàm số lẻ. C. Hàm số y = sin x tuần hoàn với chu kỳ T = 2pi. D. Hàm số y = cot x là hàm số chẵn. [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành ABCD tâm O. Gọi M, N, P lần lượt là trung điểm các cạnh SA, SD, BC. a) Tìm giao điểm của đường thẳng MC với mặt phẳng (SBD). b) Tìm giao tuyến d của hai mặt phẳng (MNO) và (SCD). Chứng minh d song song với mặt phẳng (SBC). + Các mặt của một con xúc sắc được đánh số từ 1 đến 6. Người ta gieo con xúc sắc 3 lần liên tiếp và nhân các con số nhận được trong mỗi lần gieo với nhau. Tính xác suất để tích thu được là một số chia hết cho 6. + Biết tổng của ba hệ số của ba số hạng thứ nhất, thứ hai, thứ ba trong khai triển (x^3 + 1/x^2)^n bằng 11. Tìm hệ số của số hạng chứa x2.