Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 12 năm 2024 trường Nguyễn Khuyến Lê Thánh Tông - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra định kì môn Toán 12 năm học 2023 – 2024 trường THCS – THPT Nguyễn Khuyến và trường TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2024; đề thi có đáp án trắc nghiệm mã đề 131 – 247 – 522. Trích dẫn Đề kiểm tra Toán 12 năm 2024 trường Nguyễn Khuyến & Lê Thánh Tông – TP HCM : + Năm 2025 là một năm đặc biệt đối với người yêu toán học, vì 2025 là một số chính phương (tạm gọi là “năm chính phương”), và đây cũng là năm chính phương duy nhất của thế kỷ 21; muốn có được năm chính phương tiếp theo, ta phải chờ thêm 91 năm nữa, tức là năm 2116. Để chào đón năm chính phương đặc biệt này, một thầy giáo dạy toán đã gọi hai em học sinh lên bảng và cho mỗi em viết ngẫu nhiên một số chính phương mà em biết từ 1 đến 2025. Tính xác suất để hai em viết ra hai số chính phương giống nhau và đều là số chia hết cho cả 3 và 5 (biết cả hai em học sinh đều viết đúng số chính phương của mình và khả năng xuất hiện mỗi số chính phương là như nhau). + Một người nghĩ ra cách làm gấu tuyết đón giáng sinh như sau: Ghép hai mặt cầu có bán kính lần lượt là 3dm và 5dm lại với nhau, khoảng cách hai tâm của chúng là 6dm. Gọi (C) là phần đường tròn giao của hai mặt cầu trên, người đó cắt bỏ đường tròn (C), sau đó cho luồn một chiếc ống hình trụ bằng kim loại qua đường tròn (C) sao cho hai đáy của hình trụ cũng là đường tròn có cùng bán kính với (C) và nằm trên hai mặt cầu khác nhau (với cách làm này thì kết cấu của gấu tuyết được vững chắc). Tính thể tích chiếc ống hình trụ đó. + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, G là trọng tâm tam giác SOD. Một mặt phẳng (P) qua G và cắt các đường thẳng SA, SC, SD theo thứ tự tại I, J, K. Giá trị nhỏ nhất của biểu thức 2 13 4 12 SA SC SD SA Q SI SJ SK SI bằng ab với a b. Tính a b.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nguyễn Khuyến - Nam Định
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nguyễn Khuyến – Nam Định gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Một khối đá có hình là một khối cầu bán kính R, Người thợ thử công mỹ nghệ cần cắt và gọt viên đá đó thành một viên đá cảnh có hình dạng là một khối trụ. Tính thể tích lớn nhất có thể của viên đá cảnh sau khi đã hoàn thiện. + Một khối cầu có bán kính 6 dm người ta cắt bỏ 2 phần của khối cầu bằng 2 mặt phẳng (P) và (Q) song song với nhau (tâm khối cầu nằm giữa 2 mặt phẳng (P) và (Q)), biết mặt phẳng (P) cách tâm 3 dm, (Q) cách tâm 4 dm để làm một chiếc lu đựng nước. Tính thể tích của chiếc lu.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lam Sơn - Thanh Hóa lần 3
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lam Sơn – Thanh Hóa lần 3 gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết câu vận dụng cao. Trích một số bài toán trong đề: + Cho một hình trụ có bán kính đáy và chiều cao đều bằng 4dm. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy. Biết mặt phẳng (ABCD) không vuông góc với mặt đáy của hình trụ. Tính diện tích S của hình vuông ABCD. + Một cầu thang hình xoắn ốc có dạng như hình vẽ. Biết rằng cầu thang có 21 bậc được chia đều nhau, mỗi mặt bậc có dạng hình quạt với OA = OD = 100(cm) góc mở của mỗi quạt là góc AOD = 20 độ, độ cao từ sàn nhà đến hết bậc 21 là 330 (cm). Tính chiều dài của lan can cầu thang (tính từ bậc 1 đến hết bậc 21). (Làm tròn đến cm). + Cho một hình trụ có bán kính đáy và chiều cao đều bằng 4dm. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy. Biết mặt phẳng (ABCD) không vuông góc với mặt đáy của hình trụ. Tính diện tích S của hình vuông ABCD.
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT Bình Dương
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT Bình Dương gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: + Cần xây một hồ cá có dạng hình hộp chữ nhật với đáy có các cạnh 40cm và 30cm. Để trang trí, người ta đặt vào đấy một quả cầu thủy tinh có bán kính 5cm. Sau đó, đổ đầy hồ 30 lít nước. Hỏi chiều cao của hồ cá là bao nhiêu cm? + Năm 2017 số tiền để đổ đầy bình xăng cho một chiếc xe máy trung bình là 70000 (đồng). Giả sử tỉ lệ lạm phát hằng năm của Việt Nam trong 10 năm tới không đổi với mức 5%, tính số tiền để đổ đầy bình xăng cho chiếc xe máy đó vào năm 2022.
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn VI)
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn VI) gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Một bể nước lớn của khu công nghiệp có phần chứa nước là một khối nón đỉnh S phía dưới (hình vẽ) , đường sinh SA = 27mét. Có một lần lúc bể chứa đầy nước, người ta phát hiện nước trong bể không đạt yêu cầu về vệ sinh nên lãnh đạo khu công nghiệp cho thoát hết nước để làm vệ sinh bể chứa. Công nhân cho thoát nước ba lần qua một lổ ở đỉnh S. Lần thứ nhất khi mực nước tới điểm M thuộc SA thì dừng, lần thứ hai khi mực nước tới điểm N thuộc SA thì dừng, lần thứ ba mới thoát hết nước. Biết rằng lượng nước mỗi lần thoát bằng nhau. Tính độ dài đoạn MN. + Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp đèn lộng lẫy. Ngọn tháp hình tứ giác đều S.ABCD cạnh bên SA = 600 mét, góc ASB = 15 độ. Do có sự cố đường dây điện tại điểm Q (là trung điểm của SA) bị hỏng, người ta tạo ra một con đường từ A đến Q gồm bốn đoạn thẳng: AM, MN, NP, PQ (hình vẽ). Để tiết kiệm kinh phí, kỹ sư đã nghiên cứu và có được chiều dài con đường từ A đến Q ngắn nhất. Tính tỷ số k = (AM + MN)/(NP + PQ). + Ông A vay ngân hàng T(triệu đồng) với lãi suất 12% năm. Ông A thỏa thuận với ngân hàng cách thức trả nợ như sau: sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng. Nhưng cuối tháng thứ ba kể từ lúc vay ông A mới hoàn nợ lần thứ nhất, cuối tháng thứ tư ông A hoàn nợ lần thứ hai, cuối tháng thứ năm ông A hoàn nợ lần thứ ba ( hoàn hết nợ). Biết rằng số tiền hoàn nợ lần thứ hai gấp đôi số tiền hoàn nợ lần thứ nhất và số tiền hoàn nợ lần thứ ba bằng tổng số tiền hoàn nợ của hai lần trước. Tính số tiền ông A đã hoàn nợ ngân hàng lần thứ nhất.