Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán)

Nội dung Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Vào ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông cho năm học 2019 – 2020. Đây là kỳ thi dành cho các thí sinh mong muốn vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 của sở GD&ĐT Hà Nội (chuyên Toán – Vòng 2) bao gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán. Thời gian cho học sinh làm bài là 150 phút. Trích dẫn một số câu hỏi từ đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán): + Trong tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Điểm I là tâm của đường tròn nội tiếp tam giác ABC. Tia AI cắt đoạn thẳng BC tại điểm J, cắt đường tròn (O) tại điểm thứ hai M (M khác A). Chứng minh rằng MI^2 = MJ.MA. Kẻ đường kính MN của đường tròn (O). Đường thẳng MN cắt các tia phân giác trong của góc ABC và góc ACB lần lượt tại các điểm P và Q. Chứng minh N là trung điểm của đoạn thẳng PQ. Lấy điểm E bất kỳ thuộc cung nhỏ MC của đường tròn (O) (E khác M ). Gọi F là điểm đối xứng với điểm I qua điểm E. Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh bốn điểm P, Q, R, F cùng thuộc một đường tròn. + Trên mặt phẳng với mỗi điểm được tô bởi một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại hai điểm được tô bởi cùng một màu và có khoảng cách bằng d. Điều này sẽ dẫn đến việc tồn tại hai tam giác vuông và đồng dạng với nhau theo tỉ số k = 1/2019. Đề Toán tuyển sinh năm học 2019 – 2020 của sở GD&ĐT Hà Nội đã tạo cơ hội cho các học sinh thể hiện năng lực và kiến thức toán học của mình. Hãy cùng chúng tôi chờ đón kết quả của các thí sinh trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh vào môn Toán của các trường chuyên, chọn trên toàn quốc
Nội dung Đề thi tuyển sinh vào môn Toán của các trường chuyên, chọn trên toàn quốc Bản PDF - Nội dung bài viết Sách đề thi tuyển sinh vào môn Toán của các trường chuyên từ năm 2000 đến nay Sách đề thi tuyển sinh vào môn Toán của các trường chuyên từ năm 2000 đến nay Sách bao gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên từ năm 2000 đến nay, với lời giải chi tiết. Đây là tài liệu hữu ích giúp học sinh chuẩn bị cho kỳ thi tuyển sinh vào các trường chuyên trên toàn quốc. Các đề thi được tổng hợp từ nhiều năm, giúp học sinh ôn tập và nắm vững kiến thức, kỹ năng cần thiết để đạt kết quả cao trong kỳ thi quan trọng này. Sách cung cấp một cách tiếp cận cụ thể, dễ hiểu và chi tiết, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Đề thi tuyển sinh THPT công lập năm học 2017 2018 môn Toán sở GD và ĐT Bến Tre
Nội dung Đề thi tuyển sinh THPT công lập năm học 2017 2018 môn Toán sở GD và ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT công lập năm học 2017-2018 môn Toán sở GD và ĐT Bến Tre Đề thi tuyển sinh THPT công lập năm học 2017-2018 môn Toán sở GD và ĐT Bến Tre Trận đấu sôi động giữa học sinh và bài toán đã bắt đầu. Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre vừa được phát. Hàng loạt bài toán hấp dẫn, đầy thử thách đã được đặt ra. Bài toán đầu tiên yêu cầu giải phương trình \( x^2 - 2(m - 1)x - (2m + 1) = 0 \) với \( m = 2 \). Học sinh cần tìm ra nghiệm của phương trình và làm rõ tính chất của nó với mọi giá trị của \( m \). Với sự khéo léo và kiến thức vững chắc, học sinh sẽ có thể vượt qua thử thách này một cách dễ dàng. Bài toán tiếp theo đưa học sinh vào tế bào của parabol và đường thẳng. Việc vẽ đồ thị của parabol và đường thẳng trên mặt phẳng tọa độ, tìm tọa độ giao điểm của chúng không chỉ đòi hỏi sự kiên nhẫn mà còn sự logic và khả năng suy luận. Đề thi này không chỉ là cơ hội để học sinh thể hiện kiến thức mà còn để họ rèn luyện khả năng tư duy, xử lý vấn đề và tự tin trước những thách thức. Mỗi bài toán là một cửa sổ mở ra thế giới kiến thức, chờ đợi những trí tuệ sáng tạo và nhiệt huyết của các bạn trẻ.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường TH Cao Nguyên Đắk Lắk
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk bao gồm 4 bài toán tự luận với lời giải chi tiết. Trong số các bài toán trong đề thi, có một số bài như sau: 1. Bài toán về đường tròn: Có đường tròn tâm O, vẽ hai tiếp tuyến AB và AC từ điểm A nằm ngoài đường tròn. Gọi E là giao điểm của OA và BC. Phần a của bài toán yêu cầu chứng minh tứ giác ABOC nội tiếp, phần b yêu cầu chứng minh một mối liên hệ giữa các độ dài đoạn thẳng trong tứ giác, và phần c yêu cầu chứng minh một số tính chất góc và tam giác. 2. Bài toán về tam giác: Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Bài toán yêu cầu chứng minh một mối liên hệ giữa các độ dài đoạn thẳng trong tam giác. Các bài toán trong đề thi này giúp cho học sinh rèn luyện kỹ năng tư duy logic, khả năng giải quyết vấn đề và áp dụng kiến thức Toán vào thực tế. Qua đó, giúp học sinh nắm vững kiến thức cơ bản và phát triển khả năng suy luận, giải quyết vấn đề.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Lạng Sơn
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán của sở GD và ĐT Lạng Sơn bao gồm 4 bài toán tự luận, với lời giải chi tiết dưới đây. Trong đó có bài toán sau: Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. Ta có: a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1). Qua bài toán trên, ta cần sử dụng kiến thức về hình học định lí và kỹ năng suy luận để giải quyết vấn đề. Hãy cẩn thận và tỉ mỉ với từng bước giải, để đạt được kết quả chính xác nhất.