Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp Đirichlê và ứng dụng - Nguyễn Hữu Điển

Tài liệu gồm 184 trang, được biên soạn bởi tác giả Nguyễn Hữu Điển, hướng dẫn ứng dụng phương pháp Đirichlê trong giải toán. Nguyên lý những cái lồng và các chú thỏ đã được biết đến từ rất lâu. Ngay trong chương trình phổ thông cơ sở chúng ta cũng đã làm quen với phương pháp giải toán này. Thực ra nguyên lý này mang tên nhà bác học người Đức Pête Gutxtap Legien Dirichlet (1805 – 1859). Nguyên lý phát biểu rất đơn giản: Nếu chúng ta nhốt thỏ vào các lồng mà số lồng ít hơn số thỏ, thì thể nào cũng có một lồng nhốt ít nhất hai con thỏ. Chỉ bằng nguyên lý đơn giản như vậy hàng loạt các bài toán đã được giải. Cuốn sách được biên soạn lại theo từng chủ đề có liên quan đến nguyên lý, mỗi cách giải trong ví dụ của từng chương là áp dụng điển hình nguyên lý Đirichlê. Bài tập giải trước có liên quan đến bài giải sau nên cần lưu ý khi đọc sách. Với mong muốn cùng bạn đọc thảo luận một phương pháp chứng minh toán học và hy vọng cung cấp một tài liệu bổ ích cho các thầy cô giáo và các em học sinh ham mê tìm tòi trong toán học, tác giả mạnh dạn biên soạn cuốn sách này. MỤC LỤC : Chương 1. Nguyên lý Đirichlê và ví dụ. 1.1. Nguyên lý Đirichlê. 1.2. Ví dụ. 1.3. Bài tập. Chương 2. Số học. 2.1. Phép chia số tự nhiên. 2.2. Ví dụ. 2.3. Bài tập. Chương 3. Dãy số. 3.1. Nguyên lý Đirichlê cho dãy số vô hạn. 3.2. Ví dụ. 3.3. Bài tập. Chương 4. Hình học. 4.1. Ví dụ. 4.2. Bài tập. Chương 5. Mở rộng nguyên lý Đirichlê. 5.1. Nguyên lý Đirichlê mở rộng. 5.2. Ví dụ. 5.3. Bài tập. Chương 6. Bài tập số học nâng cao. 6.1. Định lý cơ bản của số học. 6.2. Ví dụ. 6.3. Bài tập. Chương 7. Bài tập dãy số nâng cao. 7.1. Ví dụ. 7.2. Bài tập. Chương 8. Số thực với tập trù mật. 8.1. Tập trù mật. 8.2. Ví dụ. 8.3. Bài tập. Chương 9. Những ứng dụng khác của nguyên lý Đirichlê. 9.1. Xấp xỉ một số thực. 9.2. Bài tập. Chương 10. Nguyên lý Đirichlê cho diện tích. 10.1. Phát biểu nguyên lý Đirichlê cho diện tích. 10.2. Ví dụ. 10.3. Bài tập. Chương 11. Toán học tổ hợp. 11.1. Ví dụ. 11.2. Bài tập. Chương 12. Một số bài tập hình học khác. 12.1. Ví dụ. 12.2. Bài tập. Chương 13. Một số đề thi vô địch. Chương 14. Bài tập tự giải. Chương 15. Lời giải và gợi ý.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào
Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu chuyên đề này bao gồm 09 trang, được thiết kế dành cho học sinh lớp 9 chuẩn bị cho kì thi tuyển sinh vào lớp 10. Nội dung tài liệu tập trung vào phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình bậc nhất hai ẩn, kèm theo đáp án và lời giải chi tiết. Các bài tập được lựa chọn từ các nguồn đáng tin cậy, giúp học sinh hiểu rõ về kiến thức và rèn luyện kỹ năng giải bài toán hiệu quả.
Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào
Nội dung Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào Bản PDF - Nội dung bài viết Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Tài liệu này có tổng cộng 31 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và lựa chọn các bài tập chuyên đề về hàm số bậc nhất và hàm số bậc hai. Nội dung của tài liệu bao gồm các bài tập được chọn lọc từ các đề thi tuyển sinh vào lớp 10 môn Toán, kèm theo đáp án và lời giải chi tiết. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.
Chuyên đề biến đổi đại số ôn thi vào
Nội dung Chuyên đề biến đổi đại số ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu này bao gồm 31 trang, cung cấp hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề biến đổi đại số. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Các bài toán được lựa chọn từ các nguồn đáng tin cậy, đảm bảo chất lượng và phong phú cho việc ôn tập của học sinh.
Một số bài toán về đường cố định và điểm cố định
Nội dung Một số bài toán về đường cố định và điểm cố định Bản PDF - Nội dung bài viết Một số bài toán về đường cố định và điểm cố địnhKiến thức cần nhớCác bước giải bài toán về đường cố định và điểm cố định Một số bài toán về đường cố định và điểm cố định Trong tài liệu này, bạn sẽ được giới thiệu với 71 trang tập hợp một số bài toán về đường cố định và điểm cố định, đều hay và khó, với đáp án và lời giải chi tiết. Đây là công cụ hữu ích cho học sinh trong quá trình ôn tập và chuẩn bị cho kỳ thi vào lớp 10 môn Toán cũng như cho các kỳ thi học sinh giỏi môn Toán trình độ trung học cơ sở. Kiến thức cần nhớ Để giải các bài toán về đường cố định và điểm cố định, bạn cần có kĩ năng phân tích bài toán và suy nghĩ sâu để tìm ra lời giải. Một trong những bước quan trọng là dự đoán yếu tố cố định, có thể thực hiện bằng cách giải bài toán trong trường hợp đặc biệt, xét các đường đặc biệt của một họ đường, hoặc dựa vào tính đối xứng, tính độc lập của các đối tượng. Các bước giải bài toán về đường cố định và điểm cố định Tìm hiểu bài toán: Xác định yếu tố cố định, yếu tố chuyển động, yếu tố không đổi và quan hệ không đổi Dự đoán điểm cố định: Dựa vào những vị trí đặc biệt để dự đoán yếu tố cố định Tìm tòi hướng giải: Tìm mối quan hệ giữa yếu tố cố định với các yếu tố khác Để hiểu rõ hơn về cách giải bài toán về đường cố định và điểm cố định, tài liệu cung cấp các ví dụ minh họa và bài tập tự luyện, kèm theo hướng dẫn giải chi tiết.