Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Sơn La

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Sơn La Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Sơn La Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Sơn La Xin chào quý thầy cô và các em học sinh lớp 9! Đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 tại trường THPT chuyên Sơn La, tỉnh Sơn La. Đề thi này dành cho thí sinh muốn thi vào các lớp chuyên Toán và chuyên Tin học. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Đề thi bao gồm các câu hỏi sau: Tìm giá trị của tham số k để đường thẳng (d1): y = -x + 2 cắt đường thẳng (d2): y = 2x + 3 - k tại một điểm nằm trên trục hoành. Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx - m + 1 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |x1 - x2| > 3. Cho tam giác ABC có ba góc nhọn (AB > AC) nội tiếp đường tròn (O; R). Đường cao AH của tam giác ABC cắt đường tròn (O; R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M. Hãy chứng minh rằng tứ giác BMHD nội tiếp và DA là tia phân giác của góc MDC. Từ D kẻ DN vuông góc với đường thẳng AC tại N. Chứng minh ba điểm M, H, N thẳng hàng. Cho P = AB^2 + AC^2 + CD^2 + BD^2. Hãy tính giá trị của biểu thức P theo R. Hy vọng rằng đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán tuyển sinh 10 năm 2024 - 2025 trường THCS Trần Phú - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 trường THCS Trần Phú, thành phố Bắc Giang, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 20 tháng 02 năm 2024. Trích dẫn Đề thi thử Toán tuyển sinh 10 năm 2024 – 2025 trường THCS Trần Phú – Bắc Giang : + Để tăng diện tích sân bóng hình chữ nhật của trường thêm 2 1100m có thể thực hiện bằng hai cách: – Cách 1: cùng tăng chiều rộng và chiều dài, mỗi chiều thêm 10m. – Cách 2: tăng chiều rộng thêm 30m và giảm chiều dài đi 10m. Hỏi các kích thước của sân bóng ban đầu là bao nhiêu? + Một tòa chung cư cao tầng ở TP Bắc Giang có bóng trên mặt đất dài 170m, cùng thời điểm đó một cột đèn cao 6m có bóng trên mặt đất dài 12m. Em hãy cho biết tòa chung cư đó có bao nhiêu tầng biết rằng mỗi tầng cao 3,4m? + Một người đi bộ tập thể dục trên đoạn đường ven sông Thương từ vị trí A đến vị trí B rồi quay về vị trí A, hết tổng thời gian là 38 phút. Tính vận tốc của người đó lúc về, biết rằng hai vị trí A, B cách nhau 1,5 km và vận tốc lúc đi lớn hơn vận tốc lúc về là 0,5 km/h.
Đề thi thử Toán vào 10 lần 1 năm 2024 - 2025 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 1 năm học 2024 – 2025 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 07 tháng 01 năm 2024. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2024 – 2025 trường Lương Thế Vinh – Hà Nội : + Cho ba đường thẳng (d1): y = x + 2; (d2): y = 2x + 1; (d3): y = (m2 + 1)x + m. a) Tìm giá trị của m để đường thẳng (d2) và (d3) song song với nhau. b) Tìm tọa độ giao điểm của (d1) và (d2). c) Tìm các giá trị của m để ba đường thẳng trên đồng quy tại một điểm. + Một người quan sát từ đỉnh của một ngọn Hải Đăng cao 350 m so với mực nước biển, nhìn thấy một chiếc thuyền bị nạn dưới góc 20° so với phương ngang của mực nước biển (như hình vẽ bên). Hỏi để đi theo phương ngang từ chân ngọn Hải Đăng đến cứu con thuyền cần đi quãng đường bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EM vuông góc với AO tại H. a) Cho biết bán kính R = 5cm, OH = 3cm. Tính độ dài dây EM. b) Chứng minh: AM là tiếp tuyến của đường tròn (O). Đường thẳng qua O vuông góc với OA cắt AM tại B. Từ B vẽ tiếp tuyến BF (F khác M) với đường tròn (O) (F là tiếp điểm). Chứng minh E, O, F thẳng hàng. c) Trên tia đối của tia BM lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh: AE = DQ.
Đề thi thử Toán vào lớp 10 năm 2024 - 2025 trường THCS Việt Ngọc - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 trường THCS Việt Ngọc, huyện Tân Yên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 17 tháng 12 năm 2023; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề MÃ T001 MÃ T002 MÃ T003. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 trường THCS Việt Ngọc – Bắc Giang : + Cho phương trình 2 x m xm 2 (1) 2 1 0 (x là ẩn, m là tham số) (1). Giải phương trình (1) với m = 1011. Tìm m để phương trình (1) có hai nghiệm thỏa mãn nghiệm này gấp hai lần nghiệm kia. + Để chuẩn bị tốt cho việc tham gia kỳ thi tuyển sinh vào lớp 10 trung học phổ thông, bạn Minh đến cửa hàng mua thêm 1 chiếc bút bi để làm bài tự luận và 1 chiếc bút chì để làm bài trắc nghiệm khách quan. Bạn Minh đã trả cho cửa hàng hết 30000 đồng. Hãy tính giá bán của mỗi chiếc bút trên, biết rằng tổng số tiền nếu mua 5 chiếc bút bi và 3 chiếc bút chì bằng tổng số tiền khi mua 2 chiếc bút bi và 5 chiếc bút chì. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O), đường cao AH (H BC). Trên đoạn thẳng AH lấy điểm D bất kỳ (D khác A và H). Gọi M và N theo thứ tự là hình chiếu vuông góc của D trên AB và AC. 1. Chứng minh tứ giác BMDH nội tiếp. 2. Chứng minh MN song song với tiếp tuyến tại A của đường tròn tâm O. 3. Đường thẳng AH cắt MN tại I. Chứng minh khi D di động trên AH thì tâm đường tròn ngoại tiếp tam giác BMI luôn thuộc một đường cố định.
Đề thi thử Toán vào lớp 10 năm 2024 trường THCS Hoằng Thanh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Hoằng Thanh, huyện Hoằng Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 17 tháng 12 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 trường THCS Hoằng Thanh – Thanh Hóa : + Cho hai đường thẳng (d1): y = –x + m + 2 và (d2): y = (m2 – 2)x + 3. Tìm m để (d1) và (d2) song song với nhau. + Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của CD, kẻ AH vuông góc với MO tại H. a) Tính OH.OM theo R. b) Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn. c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R). + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức: P = 1 + 3/(xy + yz + xz).