Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Sơn La

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Sơn La Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Sơn La Đề thi tuyển sinh môn Toán (chuyên) năm 2022 2023 trường chuyên Sơn La Xin chào quý thầy cô và các em học sinh lớp 9! Đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 tại trường THPT chuyên Sơn La, tỉnh Sơn La. Đề thi này dành cho thí sinh muốn thi vào các lớp chuyên Toán và chuyên Tin học. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Đề thi bao gồm các câu hỏi sau: Tìm giá trị của tham số k để đường thẳng (d1): y = -x + 2 cắt đường thẳng (d2): y = 2x + 3 - k tại một điểm nằm trên trục hoành. Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx - m + 1 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |x1 - x2| > 3. Cho tam giác ABC có ba góc nhọn (AB > AC) nội tiếp đường tròn (O; R). Đường cao AH của tam giác ABC cắt đường tròn (O; R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M. Hãy chứng minh rằng tứ giác BMHD nội tiếp và DA là tia phân giác của góc MDC. Từ D kẻ DN vuông góc với đường thẳng AC tại N. Chứng minh ba điểm M, H, N thẳng hàng. Cho P = AB^2 + AC^2 + CD^2 + BD^2. Hãy tính giá trị của biểu thức P theo R. Hy vọng rằng đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương bao gồm 4 bài toán tự luận. Trong đề thi có một số bài toán thú vị như sau: 1. Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D, E, F lần lượt là tiếp điểm của (O) với các cạnh AB, AC, BC, I là giao điểm của BO với EF, M là điểm di động trên đoạn CE. a. Tính số đo góc BIF. b. Gọi H là giao điểm của BM và EF. Chứng minh rằng nếu AM = AB thì tứ giác ABHI là tứ giác nội tiếp. c. Gọi N là giao điểm của BM với cung nhỏ EF của (O), P và Q lần lượt là hình chiếu vuông góc của N lên các đường thẳng DE, DF. Xác định vị trí của điểm M để độ dài PQ là lớn nhất. Đây là một trong những đề thi tuyển sinh khó, đòi hỏi học sinh phải nắm vững kiến thức và có khả năng tự tư duy, giải quyết vấn đề một cách logic. Hy vọng học sinh sẽ có kết quả tốt khi tham gia vào bài thi này.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán)
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán của trường chuyên Lê Quý Đôn ở Bình Định (chuyên Toán) được thiết kế với 5 bài toán tự luận, đi kèm lời giải chi tiết. Một trong những bài toán trong đề bao gồm các phần sau: Cho một đường tròn (T) có tâm O và đường kính AB. Trên tiếp tuyến tại A, ta lấy một điểm P khác A và điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (trong đó C nằm giữa P và D), H là trung điểm của đoạn thẳng CD. a) Chứng minh rằng tứ giác AOHP nội tiếp được đường tròn. b) Vẽ DI song song với PO, với I thuộc AB, chứng minh: góc PDI bằng góc BAH. c) Chứng minh rằng PA^2 = PC.PD. d) BC cắt OP tại J, chứng minh rằng AJ song song với DB. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức về đường tròn và hình học không gian để giải quyết các bài toán phức tạp. Qua đó, giúp học sinh phát triển tư duy logic, khả năng suy luận và giải quyết vấn đề một cách logic và hiệu quả.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Toán)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh Chuyên Toán năm học 2017 – 2018 trường THPT chuyên Hùng Vương Phú Thọ Đề thi tuyển sinh Chuyên Toán năm học 2017 – 2018 trường THPT chuyên Hùng Vương Phú Thọ Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Toán) bao gồm 5 bài toán tự luận. Dưới đây là một số bài toán trong đề: Tìm các số nguyên m sao cho m^2 + 12 là số chính phương. Chứng minh rằng trong 11 số nguyên tố phân biệt, lớn hơn 2 bất kỳ luôn chọn được hai số a, b sao cho a^2 – b^2 chia hết cho 60. Cho tam giác ABC cân với góc BAC = 120 độ, nội tiếp đường tròn (O). Gọi D là giao điểm của đường thẳng AC với tiếp tuyến của (O) tại B; E là giao điểm của đường thẳng BO với đường tròn (O) ( E khác B); F, I lần lượt là giao điểm của DO với AB, BC; M, N lần lượt là trung điểm của AB, BC. a) Chứng minh rằng tứ giác ADBN nội tiếp. b) Chứng minh rằng F, N, E thẳng hàng. c) Chứng minh rằng các đường thẳng MI, BO, FN đồng quy.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin)
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) là bài thi quan trọng để học sinh thể hiện kiến thức và khả năng giải quyết vấn đề của mình. Đề thi gồm 5 bài toán tự luận, được kèm theo lời giải chi tiết, giúp học sinh hiểu rõ cách giải các bài toán. Bài thi này không chỉ đánh giá kiến thức của học sinh mà còn đề cao khả năng tư duy logic, sáng tạo và khả năng xử lý vấn đề. Việc giải quyết thành công đề thi này không chỉ ảnh hưởng đến kết quả học tập mà còn mở ra cơ hội cho học sinh theo đuổi những ý tưởng và nghề nghiệp sau này. Đề thi này cũng là cơ hội để học sinh thử thách bản thân, nâng cao trình độ và tự tin trong việc giải quyết các vấn đề phức tạp. Hy vọng rằng các thí sinh sẽ tự tin và thành công trong kỳ thi sắp tới.