Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đồng Tháp

Nội dung Đề thi vào chuyên môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Đồng Tháp. Đề thi sẽ diễn ra vào thứ Bảy, ngày 10 tháng 06 năm 2023. Trong đề thi, có ba bài toán khó đều đang chờ các bạn. Ví dụ, trong bài toán thứ nhất, bạn sẽ phải tính khoảng cách từ điểm N đến đoạn thẳng BC trên tờ giấy hình tam giác ABC vuông tại A. Đây là một bài toán đòi hỏi sự logic và kỹ năng tính toán chính xác. Bài toán thứ hai đề cập đến tam giác ABC nhọn và việc chứng minh các điểm trên đường thẳng AH và EF. Bạn sẽ phải chứng minh nội tiếp tứ giác AIJE và tính toán vị trí của các điểm trên đường thẳng BC. Đây là một bài toán phức tạp và đòi hỏi sự tư duy logic và khả năng suy luận tốt. Cuối cùng, bài toán thứ ba liên quan đến việc mua thẻ tại Phiên chợ hè Lotus. Bạn sẽ phải tính toán số cách mua thẻ giá 3000 đồng và 4000 đồng nếu có một số tiền nhất định. Đây là một bài toán áp dụng kiến thức toán học vào thực tế và yêu cầu khả năng áp dụng kiến thức vào vấn đề cụ thể. Như vậy, đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Đồng Tháp sẽ là một thách thức lớn đối với các thí sinh. Hy vọng rằng các em sẽ rèn luyện và chuẩn bị kỹ lưỡng để đạt kết quả tốt nhất trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Tháp
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Tháp gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Để tạo sân chơi cho học sinh tham gia các hoạt động tìm hiểu về hình ảnh và con người Đồng Tháp, Đoàn Thanh Niên Cộng Sản Hồ Chí Minh của một trường đã tổ chức hội thi Đồng Tháp trong trái tim tôi với các nội dung về hoạt động khởi nghiệp, du lịch trải nghiệm những địa danh ,nét văn hóa đặc trưng làng nghề, các món ăn, cây trái … của tỉnh. Sau hai vòng thi Ban Tổ Chức đã chọn ra ba đội xuất sắc là Hoa Sen, Hoa Súng, Hoa Tràm vào thi chung kết. Theo qui định của Ban Tổ Chức Hội Thi, mỗi đội phải trả lời 12 câu hỏi, mỗi câu trả lời đúng được cộng 10 điểm, mỗi câu trả lời sai trừ 3 điểm, mỗi câu không trả lời thì không được điểm. Trải qua các câu hỏi thì, đội Hoa Sen được 61 điểm. Hỏi đội Hoa Sen đã trả lời đúng, sai và không trả lời bao nhiêu câu hỏi? [ads] + Thực hiện đổi mới phương pháp dạy học ,đổi mới kiểm tra đánh giá theo hướng phát triển năng lục học sinh, trong một tiết dạy hình học, một giáo viên đã ứng dụng công nghệ thông tin, sử dụng phần mềm biểu diễn cho học sinh quan sát trực quan. Cụ thể: Hình thang cân ABCD (AB song song với CD), có AB = 30cm, CD = 54cm và đường cao AH = 9cm. Cho hình thang này quay quanh cạnh đáy CD. Em hãy giúp bạn tính: 1/ Thể tích của hình tạo thành. 2/ Diện tích mặt ngoài của hình tạo thành.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Quãng Ngãi gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy .Gỉa sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M,N,P,Q cùng thuộc một đường tròn. [ads] + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE a. Chứng minh rằng các tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt ,các số đó đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.
Đề thi thử tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THCS Nga Thiện - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết.