Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tuyển sinh năm 2020 2021 trường Phan Huy Chú Hà Nội

Nội dung Đề thi thử Toán tuyển sinh năm 2020 2021 trường Phan Huy Chú Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán tuyển sinh năm 2020-2021 trường Phan Huy Chú Hà Nội Đề thi thử Toán tuyển sinh năm 2020-2021 trường Phan Huy Chú Hà Nội Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán tuyển sinh lớp 10 THPT năm học 2020-2021 trường THPT Phan Huy Chú, quận Đống Đa, thành phố Hà Nội. Đề thi được biên soạn theo dạng tự luận với 01 trang và 05 bài toán, thời gian làm bài thi là 90 phút. Dưới đây là một số câu hỏi trong đề thi: Bài toán 1: Khoảng cách giữa hai tỉnh A và B là 120 km. Hai người đi xe máy cùng khởi hành một lúc đi từ A đến B với vận tốc bằng nhau. Sau khi đi được 1 giờ thì xe của người thứ nhất bị hỏng nên phải dừng lại sửa xe 14 phút, còn người thứ hai tiếp tục đi với vận tốc ban đầu. Sau khi sửa xe xong, người thứ nhất đi với vận tốc nhanh hơn trước 10 km/h nên đã đến B cùng lúc với người thứ hai. Hãy tính vận tốc hai người đi lúc đầu. Bài toán 2: Cho tam giác ABC có ba góc nhọn. Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác. Gọi P là giao điểm của EF và AD. Hãy chứng minh rằng A, F, D, C cùng thuộc một đường tròn và PF.DE = PE.DF. Cũng chứng minh rằng FDE = FIE và đường thẳng KH song song với đường thẳng AD. Bài toán 3: Cho biểu thức P = a^2.b + b^2.c + c^2.a với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P. Với những yêu cầu phức tạp trên, đề thi Toán tuyển sinh năm 2020-2021 trường Phan Huy Chú Hà Nội hứa hẹn sẽ mang đến cho các em học sinh những thách thức đầy hấp dẫn và cơ hội để thể hiện tài năng toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Bình Định
Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2019-2020 môn Toán sở GD ĐT Bình Định Đề tuyển sinh THPT năm 2019-2020 môn Toán sở GD ĐT Bình Định Một trong những kỳ thi quan trọng nhất đối với học sinh tỉnh Bình Định chính là kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông do Sở Giáo dục và Đào tạo tổ chức. Đây không chỉ là bước quan trọng để tốt nghiệp khối Trung học Cơ sở mà còn là cơ hội cho học sinh được tuyển chọn vào các trường THPT trên địa bàn tỉnh. Môn thi Toán được coi là một trong những môn thi quan trọng và bắt buộc trong kỳ thi này. Để giúp thầy, cô giáo, phụ huynh và học sinh tham khảo, chúng tôi sẽ giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019-2020 môn Toán của Sở GD&ĐT Bình Định, diễn ra vào ngày .../06/2019. Trích đề tuyển sinh lớp 10 THPT năm 2019-2020 môn Toán sở GD&ĐT Bình Định: Câu 1: Hai đội công nhân cùng làm chung trong 4 giờ thì hoàn thành được 2/3 công việc. Nếu làm riêng thì thời gian hoàn thành công việc đội thứ hai ít hơn đội thứ nhất là 5 giờ. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao nhiêu? Câu 2: Cho đường tròn tâm O, bán kính R và một đường thẳng d không cắt đường tròn (O)... Câu 3: Cho phương trình: x^2 - (m - 1)x - m = 0. Tìm m để phương trình trên có một nghiệm bằng 2. Tính nghiệm còn lại. Thông qua những câu hỏi và bài toán trong đề thi, học sinh sẽ được thách thức với các kiến thức Toán cơ bản và có cơ hội thể hiện khả năng tự giải quyết vấn đề. Hy vọng rằng mọi người sẽ tìm thấy thông tin hữu ích và chuẩn bị tốt cho kỳ thi sắp tới.
Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Điện Biên
Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Điện Biên Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán 2019-2020 sở GD&ĐT Điện Biên Đề tuyển sinh THPT môn Toán 2019-2020 sở GD&ĐT Điện Biên Đề thi tuyển sinh vào lớp 10 Trung học Phổ thông do sở GD&ĐT tỉnh Điện Biên tổ chức là bước ngoặt quan trọng trong cuộc đời học sinh, đánh dấu sự chuyển từ khối Trung học Cơ sở sang Trung học Phổ thông và là cơ hội để học sinh được chọn vào các trường phổ thông chất lượng trên địa bàn. Môn thi Toán không thể phủ nhận vai trò quan trọng và bắt buộc trong kỳ thi này. Để giúp quý thầy cô, phụ huynh và học sinh chuẩn bị tốt cho kỳ thi, Sytu xin giới thiệu nội dung đề thi và lời giải chi tiết của đề thi tuyển sinh vào lớp 10 THPT năm học 2019-2020 môn Toán sở GD&ĐT Điện Biên. Trích dẫn đề thi: Cho tứ giác ABCD nội tiếp (O;R) và có hai đường chéo AC, BD vuông góc tại I (I khác O). Kẻ đường kính CE. Chứng minh tứ giác ABDE là hình thang cân. Chứng minh: √(AB^2 + BC^2 + CD^2 + DA^2) = 2√2R. Từ A, B kẻ các đường thẳng vuông góc với CD lần lượt cắt BD, AC tại F và K. Tứ giác ABKF là hình gì? Cho phương trình: x^2 + ax + b + 1 = 0 (a, b là các tham số). Tìm a, b để phương trình có 2 nghiệm x1, x2 thỏa mãn: x1 - x2 = 3 và x1^3 - x2^3 = 9. Cho các số nguyên a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng A = (1 + a^2)(1 + b^2)(1 + c^2) là một số chính phương. Đây là một số dạng bài toán đa dạng và đòi hỏi học sinh phải có kiến thức vững chắc để giải quyết. Hy vọng qua việc luyện giải đề thi này, học sinh sẽ nâng cao kỹ năng Toán của mình và chuẩn bị tốt nhất cho kỳ thi sắp tới.
Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Đồng Nai
Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 THPT môn Toán sở GD&ĐT Đồng Nai Đề thi tuyển sinh vào lớp 10 THPT môn Toán sở GD&ĐT Đồng Nai Kỳ thi tuyển sinh vào lớp 10 trung học phổ thông là bước quan trọng đánh dấu sự chuyển mình trong hành trình học tập của các học sinh tại tỉnh Đồng Nai. Môn thi Toán không chỉ là một phần bắt buộc mà còn là một yếu tố quyết định việc xét tuyển vào các trường phổ thông trên địa bàn. Để giúp thầy cô giáo, phụ huynh và học sinh chuẩn bị tốt cho kỳ thi, chúng tôi xin giới thiệu nội dung và lời giải chi tiết đề thi môn Toán của sở GD&ĐT Đồng Nai năm học 2019 - 2020. Đề thi bao gồm nhiều dạng bài tập, từ những bài toán cơ bản đến những bài toán phức tạp, thách thức. Ví dụ, trong một bài toán về vay mượn tiền, học sinh được yêu cầu tính lãi suất của ngân hàng dựa trên thông tin cụ thể về số tiền, thời hạn và số tiền phải trả sau hai năm. Điều này giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và áp dụng kiến thức Toán vào thực tế. Ngoài ra, đề thi còn đề cập đến các khái niệm và công thức trong hình học, như tính diện tích xung quanh hình nón hay chứng minh tính chất của tam giác nội tiếp đường tròn. Những bài toán này yêu cầu học sinh có kiến thức vững chắc và khả năng suy luận logic để giải quyết. Qua việc giải các bài tập trong đề thi tuyển sinh Toán, học sinh không chỉ nắm vững kiến thức mà còn phát triển kỹ năng tư duy logic, khả năng giải quyết vấn đề. Đây không chỉ là cơ hội để học sinh thể hiện kiến thức mà còn là bước chuẩn bị quan trọng cho hành trình học tập phía trước.
Đề và tách chuyên đề tuyển sinh môn Toán sở GD ĐT Tiền Giang
Nội dung Đề và tách chuyên đề tuyển sinh môn Toán sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề và tách chuyên đề tuyển sinh môn Toán sở GD&ĐT Tiền Giang Đề và tách chuyên đề tuyển sinh môn Toán sở GD&ĐT Tiền Giang Sytu mang đến tài liệu tổng hợp đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang từ năm 2011 đến năm 2020 để giúp các em học sinh chuẩn bị cho kỳ thi sắp tới. Trong tài liệu, có nhiều bài toán thú vị như: 1. Đề bài: Cho đường tròn (O;R) đường kính AB = 2R, điểm M thuộc (O) (M khác A và B). Trên tia AB lấy điểm C sao cho AC = 3R. Đường thẳng (d) vuông góc với AB tại C cắt AM tại E. Yêu cầu: - Chứng minh tứ giác BCEM nội tiếp. - Tính AM.AE theo R. - Lấy N thuộc (O) (N khác A, B, M), đường thẳng AN cắt CE tại F. Chứng minh MNEF nội tiếp. 2. Đề bài: Quãng đường AB dài 90 km, có hai ôtô khởi hành cùng một lúc. Ôtô thứ nhất đi từ A đến B, ô-tô thứ hai đi từ B đến A. Sau 1 giờ hai xe gặp nhau và tiếp tục đi. Xe ôtô thứ hai tới A trước xe thứ nhất tới B là 27 phút. Yêu cầu: Tính vận tốc mỗi xe. 3. Đề bài: Trong mặt phẳng Oxy, cho parabol (P): y = 1/4×2 và đường thẳng (d): y = mx − m − 2. Yêu cầu: - Với m = 1, vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ. - Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A, B khi m thay đổi. - Xác định m để trung điểm của đoạn thẳng AB có hoành độ bằng 1. Với các bài toán đa dạng và phong phú như vậy, tài liệu sẽ giúp các em học sinh ôn tập hiệu quả và tự tin chuẩn bị cho kỳ thi sắp tới.