Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán ôn thi vào 10 năm 2023 2024 phòng GD ĐT Thiệu Hóa Thanh Hóa

Nội dung Đề KSCL Toán ôn thi vào 10 năm 2023 2024 phòng GD ĐT Thiệu Hóa Thanh Hóa Bản PDF - Nội dung bài viết Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GD&ĐT Thiệu Hóa - Thanh Hóa Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GD&ĐT Thiệu Hóa - Thanh Hóa Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2023 - 2024 của phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 20 tháng 05 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn từ Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GD&ĐT Thiệu Hóa - Thanh Hóa: - Cho đường thẳng (d): y = ax + b. Tìm a, b biết (d) cắt trục hoành tại điểm có hoành độ bằng 3 và (d) song song với đường thẳng y = 2x + 6. - Cho phương trình 2x^2 - mx + m - 1 = 3x^2 - 3. Tìm m để phương trình đã cho có hai nghiệm phân biệt 1 < x < 2 thỏa mãn 3x^2 - 12x - 13. - Cho đường tròn (O) đường kính AB cố định, trên đoạn OA lấy điểm I sao cho 2/3 AI = OA. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN (C không trùng M, N, B). Nối AC cắt MN tại E. a) Chứng minh: Tứ giác IECB nội tiếp. b) Chứng minh: 2 AE = AC, AI // IB, AI và MA là tiếp tuyến đường tròn ngoại tiếp tam giác MEC. c) Xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất. Đề thi đầy thách thức và phong phú sẽ giúp các em học sinh lớp 9 ôn tập hiệu quả cho kỳ thi vào lớp 10. File WORD đề thi được cung cấp để quý thầy, cô giáo và các em học sinh dễ dàng tiếp cận và tham gia ôn thi.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra lần 1 Toán 9 năm 2023 - 2024 trường chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2024. Trích dẫn Đề kiểm tra lần 1 Toán 9 năm 2023 – 2024 trường chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trên một khúc sông có hai địa điểm du lịch A và B cách nhau 1km. Một chiếc thuyền máy đi từ A đến B và nghỉ tại đó 30 phút, sau đó quay lại A. Thời gian từ lúc bắt đầu khởi hành đến khi quay trở lại A là 45 phút. Hỏi vận tốc thực của thuyền máy là bao nhiêu mét trên phút, biết rằng vận tốc của dòng nước là 50 mét trên phút? + Trái Đất được xem là có dạng hình cầu và kinh tuyến gốc của Trái Đất là một nửa đường tròn lớn, dài khoảng 20004 km. Tính bán kính của Trái Đất (lấy pi = 3,14 và làm tròn đến hàng phần mười của km). + Cho tam giác ABC có ba góc nhọn, AB < AC, nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng qua H song song với AB cắt AC tại P, đường thẳng qua H song song với AC cắt AB tại Q. Gọi N là điểm đối xứng với H qua PQ. 1) Chứng minh tứ giác ABHF là tứ giác nội tiếp. 2) Chứng minh tam giác BHQ đồng dạng với tam giác CHP và BAH = CAO. 3) Chứng minh PQ song song với AN và AH cắt NO tại một điểm nằm trên đường tròn ngoại tiếp tam giác APQ.
Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Việt Yên - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Việt Yên, tỉnh Bắc Giang (mã đề 358). Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Việt Yên – Bắc Giang : + Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là 20% và mặt hàng Y là 15% so với giá niêm yết. Bà Hiền mua 2 món hàng X và 1 món hàng Y thì phải trả số tiền là 395000 đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là 30% và mặt hàng Y là 25% so với giá niêm yết. Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là 603000 đồng. Tính giá niêm yết của mỗi món hàng X và Y (Giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá). + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là chân các đường cao) đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O;R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác ACMD nội tiếp đường tròn. b) Chứng minh rằng MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O;R) và đỉnh A di động trên cung lớn BC của đường tròn (O;R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định. + Công thức 3 h 04 x biểu diễn mối tương quan giữa cân nặng x (tính bằng kg) và chiều cao h (tính bằng m) của một con hươu cao cổ. Một con hươu cao cổ có chiều cao 2,56 m thì có cân nặng (kết quả làm tròn đến chữ số thập phân thứ nhất) là?
Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Nghĩa Tân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 trường THCS Nghĩa Tân, quận Cầu Giấy, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Nghĩa Tân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Thầy Tuấn dự định dùng 840 nghìn đồng mua bút và vở để làm phần thưởng cho những học sinh có thành tích xuất sắc trong học tập môn Toán học kì I. Thực tế khi đi mua hàng (mua bút và mua vở) gặp đúng dịp siêu thị khuyến mãi giảm 20% giá thành cho mỗi chiếc bút, giảm 15% giá thành cho mỗi quyển vở nên tổng số tiền thầy phải trả cho siêu thị chỉ còn là 684 nghìn đồng. Hỏi lúc đầu, thầy Tuấn dự định dùng bao nhiêu tiền để trả cho mỗi loại hàng? + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = x + 3. a) Vẽ đường thẳng (d) trên mặt phẳng tọa độ Oxy. b) Tìm tọa độ hai điểm A và B thuộc đường thẳng (d) lần lượt có hoành độ là −2 và 1. Vẽ điểm A và B trên mặt phẳng tọa độ Oxy. c) Tính diện tích tam giác OAB. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O, có đường cao AD và BE cắt nhau tại H. 1) Chứng minh bốn điểm H, E, C, D cùng thuộc một đường tròn. 2) Tia BE cắt (O) tại P. Chúng minh AHP cân tại A. 3) Gọi M là trung điểm BC. Lấy điểm K đối xứng với điểm H qua điểm M. Chứng minh K thuộc đường tròn (O) và ME vuông góc AP.
Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 01 năm 2024.