Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán THPT năm 2019 - 2020 sở GDĐT Cần Thơ

Chủ Nhật ngày 10 tháng 05 năm 2020, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn học sinh giỏi môn Toán GD THPT cấp thành phố năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán THPT năm 2019 – 2020 sở GD&ĐT Cần Thơ gồm có 02 trang với 09 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán THPT năm 2019 – 2020 sở GD&ĐT Cần Thơ : + Ban chấp hành Đoàn TNCS HCM của một trường THPT có 12 ủy viên là đoàn viên học sinh. Trong đó, khối 10 có 5 đoàn viên, khối 11 có 4 đoàn viên và khối 12 có 3 đoàn viên. Trong đợt phòng chống dịch bệnh Covid-19, để giúp người dân thực hiện việc khai báo y tế trên ứng dụng NCOVI, Bí thư Đoàn trường đã chọn ra 4 đoàn viên trong số này để đi làm nhiệm vụ. Tính xác suất sao cho 4 đoàn viên được chọn có đủ ba khối. [ads] + Một cửa hàng bán hàng trả góp cho khách hàng với điều kiện như sau: Không cần phải trả trước số tiền M là trị giá của món hàng khi mua hàng. Chỉ cần trả một số tiền cố định X mỗi tháng kể từ ngày mua với lãi suất cố định hàng tháng là r%. Thời hạn trả hết nợ là n tháng (do khách hàng chọn theo qui định của cửa hàng). Hãy lập công thức tính số tiền X mà khách hàng phải trả góp hàng tháng với các điều kiện nêu trên. + Ở vòng bán kết của một giải Tiger cup có sự góp mặt của 4 đội Việt Nam, Xingapo, Thái Lan và Inđônêxia. Trước khi các trận đấu của vòng này diễn ra các bạn Hưng, Huy và Hoàng dự đoán như sau: Hưng: Xingapo hạng nhì, Thái Lan hạng ba. Huy: Việt Nam hạng nhì, Thái Lan hạng tư. Hoàng: Xingapo hạng nhất, Inđônêxia hạng nhì. Biết rằng, dự đoán của mỗi bạn đều có một dự đoán đúng và một dự đoán sai. Bằng lập luận dựa theo các dữ kiện đã cho, hãy xác định kết quả xếp hạng đúng cho mỗi đội.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An - Gia Lai
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6.
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất.