Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 Toán 10 năm 2022 - 2023 trường THPT Đống Đa - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra đánh giá cuối học kì 1 môn Toán 10 năm học 2022 – 2023 trường THPT Đống Đa, thành phố Hà Nội; đề thi mã đề 450 gồm 04 trang với 25 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút. Trích dẫn Đề học kì 1 Toán 10 năm 2022 – 2023 trường THPT Đống Đa – Hà Nội : + Xác định parabol y = 2×2 + bx + c biết rằng parabol đó có hoành độ đỉnh bằng –2 và đi qua điểm N(1;−2). + Tìm tất cả các giá trị của a sao cho giá trị nhỏ nhất của hàm số y = 4×2 – 4ax + a2 – 2a + 2 trên đoạn [0;2] bằng 5. + Để tiết kiệm năng lượng, nhằm bảo vệ môi trường, một Sở Điện lực đưa ra phương án tính tiền điện của mỗi hộ gia đình trong một tháng như sau: Với 100 số điện (Kwh) đầu tiên hộ sử dụng phải trả là 1500 đồng/số điện. Từ số điện thứ 101 đến số điện thứ 200 hộ sử dụng phải trả là 2000 đồng/số điện. Từ số điện thứ 201 trở lên hộ sử dụng phải trả là 3000 đồng/số điện. a) Lập công thức tổng quát cách tính số tiền một hộ gia đình sử dụng x số điện mỗi tháng (x >= 0) b) Áp dụng công thức trên tính số tiền hộ gia đình sử dụng điện phải trả nếu mỗi tháng sử dụng 100 số điện, 150 số điện, 250 số điện. + Cho tam giác ABC có trọng tâm G. a) Chứng minh rằng: AD + BC = AC + BD với mọi điểm D bất kì. b) Gọi P là trung điểm của AG và Q là điểm thỏa mãn AQ = kAC. Xác định k để B, P và Q thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT Quang Trung - Hà Nội
Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội được biên soạn theo hình thức đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 35 câu, chiếm 07 điểm, phần tự luận gồm 03 câu, chiếm 03 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội : + Cho Parabol (P): y = x2 – 4x + m – 1 và đường thẳng (d): y = -2mx + 3. a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (P) khi m = 4. b) Tìm tất cả các giá trị thực của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ âm. + Giải phương trình √(21 – x2 – 4x) = x + 3. + Trong mặt phẳng Oxy, cho tam giác ABC có A(2;1), B(1;1), C(-3;4). a) Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC. b) Tìm tọa độ điểm M thuộc trục hoành sao cho (MA + MB) đạt giá trị nhỏ nhất.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 12 năm 2020, trường THCS & THPT Nguyễn Tất Thành, trực thuộc trường Đại học Sư Phạm Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, đề gồm 02 trang, phần trắc nghiệm gồm 12 câu (03 điểm), phần tự luận gồm 04 câu (07 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho A(1;2), B(-1;1), C(5;-1). a. Tính BA.CB và độ dài trung tuyến AM của tam giác ABC. b. Tìm tọa độ tâm đường tròn ngoại tiếp của tam giác ABC. + Cho tam giác ABC có AB = 2√2, AC = 3 và BAC = 135 độ. Gọi M là trung điểm của BC, điểm N thỏa mãn AN = x.AC với x thuộc R. Tìm x biết AM vuông góc với BN. + Biết phương trình (3m + 2n – 8)x = m – 3n + 1 có vô số nghiệm. Giá trị của biểu thức m2 + n2 bằng?
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT Bùi Thị Xuân - TP HCM
Thứ Ba ngày 22 tháng 12 năm 2020, trường THPT Bùi Thị Xuân, Quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Bùi Thị Xuân – TP HCM gồm 03 bài toán Đại số (06 điểm) và 02 bài toán Hình học (04 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Bùi Thị Xuân – TP HCM : + Giải và biện luận phương trình sau theo tham số m: m^2.x = 6x – 4 + m(2 – x). + Cho tam giác ABC biết AB = 5; BC = 3, góc ABC = 120°. Lấy điểm N thuộc cạnh BC thỏa mãn đẳng thức BC = 3BN. a) Tính độ dài AC, bán kính đường tròn nội tiếp và đường cao AH của tam giác ABC. b) Tính CA.CN và độ dài AN. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ các định A(-3;6), B(1;-2) và C(6;3). a) Tìm tọa độ trực tâm H của tam giác ABC. b) Gọi I là tâm đường tròn ngoại tiếp của tam giác ABC, tìm điểm K trên đường thẳng BC sao cho độ dài đoạn IK bằng 5√5.
Tuyển tập một số đề thi học kì 1 Toán 10 năm 2020 - 2021 - Bùi Đình Thông
Tài liệu gồm 34 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, tuyển tập một số đề thi học kì 1 Toán 10 năm học 2020 – 2021, giúp học sinh khối 10 ôn tập để chuẩn bị cho kỳ thi học kì 1 Toán 10 sắp tới.