Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh - Hà Nội

Thi thử THPT Quốc gia là kỳ thi không thể thiếu đối với học sinh khối 12, nhằm tạo ra cho các em một kỳ thi tương tự như kỳ thi chính thức THPT Quốc gia, để các em được làm quen và thử sức. Vừa qua, trường THPT Lương Thế Vinh, thành phố Hà Nội đã tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thứ nhất. Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh – Hà Nội gồm có bốn mã đề: 111, 132, 167, 189; đề có hình thức tương tự với các đề thi THPT Quốc gia môn Toán trước đây, nội dung thi giới hạn ở những kiến thức mà học sinh đã được học, bao gồm cả chương trình Toán lớp 10 và lớp 11; đề thi có đáp án và lời giải chi tiết đầy đủ các mã đề. [ads] Trích dẫn đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh – Hà Nội : + Bạn An có một cốc giấy hình nón với đường kính đáy là 10cm và độ dài đường sinh là 8cm. Bạn dự định đựng một viên kẹo hình cầu sao cho toàn bộ viên kẹo nằm trong cốc (không phần nào của viên kẹo cao hơn miệng cốc). Hỏi bạn An có thể đựng được viên kẹo có đường kính lớn nhất bằng bao nhiêu? + Cho hình hộp ABCD.A0B0C0D0 có đáy ABCD là hình bình hành tâm O và AD = 2AB = 2a; cos(AOB) = 3/5. Gọi E, F lần lượt là trung điểm của BC và AD. Biết rằng CD0 ⊥ CF; BB0 ⊥ ED và khoảng cách giữa hai đường thẳng CD và AA0 là a√3, tính thể tích khối hộp ABCD.A0B0C0D0. + Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (3; −2; −2) và mặt phẳng (P): x − y − z + 1 = 0. Mặt phẳng (Q): ax + by + cz + d = 0 đi qua A, vuông góc với mặt phẳng (P) và (Q) cắt hai tia Oy, Oz lần lượt tại hai điểm phân biệt M, N sao cho OM = ON (O là gốc tọa độ). Tìm d/a. + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đồ thị của hai hàm số y = 2^x và y = 1/2^x đối xứng nhau qua trục hoành. B. Đồ thị của hai hàm số y = 2^x và y = log2 x x đối xứng nhau qua đường thẳng y = −x. C. Đồ thị của hai hàm số y = log2 x và y = log2 1/x đối xứng nhau qua trục tung. D. Đồ thị của hai hàm số y = 2^x và y = log2 x đối xứng nhau qua đường thẳng y = x. + Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M (1; 2; −4) và M0 (5; 4; 2). Biết rằng M0 là hình chiếu vuông góc của M lên mặt phẳng (α), khi đó mặt phẳng (α) có một véc tơ pháp tuyến là?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán Nguyễn Phú Khánh lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán lần 1 do thầy Nguyễn Phúc Khánh biên soạn gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Khánh cầm một tờ giấy và lấy kéo cắt thành 7 mảnh sau đó nhặt một trong số các mảnh giấy đã cắt và lại cắt thành 7 mảnh. Khánh cứ tiếp tục cắt như vậy. Sau một hồi, Khánh thu lại và đếm tất cả các mảnh giấy đã cắt. Hỏi kết quả nào sau đây có thể xảy ra? A. Khánh thu được 121 mảnh B. Khánh thu được 122 mảnh C. Khánh thu được 123 mảnh D. Khánh thu được 124 mảnh + Trong các hình chữ nhật nội tiếp nửa đường tròn đường kính 4√2, hãy tìm hình có diện tích lớn nhất. A. Diện tích lớn nhất bằng 8 B. Diện tích lớn nhất bằng 10 [ads] C. Diện tích lớn nhất bằng 16 D. Diện tích lớn nhất bằng 20 + Khi nói về hàm số f(x) = (x^2 – 2x – 6)/(2x + 2), phát biểu nào sau đây sai? A. Hàm số có 2 điểm cực trị và khoảng cách giữa hai điểm cực trị bằng 6√2 B. Hàm số không nghịch biến trên khoảng ( 4;2) C. Phương trình đường thẳng đi qua 2 điểm cực trị không cùng phương với đường phân giác thứ nhất của mặt phẳng tọa độ D. Mọi đường thẳng đi qua điểm (1; 2)
Đề thi thử THPT Quốc gia 2018 môn Toán - Lê Văn Đoàn lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán lần 1 do thầy Lê Văn Đoàn biên soạn gồm 50 câu hỏi trắc nghiệm chủ đề tính đơn điệu, cực trị và giá trị lớn nhất – nhỏ nhất của hàm số. Trích dẫn đề thi : + Hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) = -2(x – 1)^2(x + 1). Hỏi khẳng định nào sau đây đúng về hàm số f(x)? A. Đạt cực đại tại điểm x = -1 B. Đạt cực tiểu tại điểm x = -1 C. Đạt cực đại tại điểm x = 1 D. Đạt cực tiểu tại điểm x = 1 + Gọi d là tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = 1/3x^3 – 2x^2 + 3x – 5. Mệnh đề nào sau là đúng? A. d song song với đường thẳng x = 1 B. d song song với trục tung [ads] C. d song song với trục hoành D. d có hệ số góc dương + Hàm số f(x) = 2x^3 + ax + b có hai cực trị là x1, x2. Hỏi kết luận nào sau đây là đúng về hàm này? A. Đường thẳng nối hai điểm cực trị qua gốc tọa độ O B. Phương trình đường thẳng nối hai điểm cực trị có dạng y = ax + b C. Tổng hai giá trị cực trị là b D. Hai điểm cực trị của đồ thị hàm số nằm về hai phía so với trục tung
Đề thi thử THPT Quốc gia 2018 môn Toán - Đoàn Trí Dũng, Hà Hữu Hải lần 3
Đề thi thử THPT Quốc gia 2018 môn Toán – Đoàn Trí Dũng, Hà Hữu Hải lần 3 biên soạn gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề thi: + Cho khối chóp tam giác S.ABC có thể tích bằng 6. Gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Thể tích V của khối chóp S.MNP là? [ads] + Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = 2a, AD = a. Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45 độ. Khi đó thể tích khối chóp S.ABCD là? + Người ta gọt một khối lập phương bằng gỗ để lấy khối tám mặt đều nội tiếp nó (tức là khối có các đỉnh là các tâm của các mặt khối lập phương). Biết cạnh của khối lập phương bằng a. Hãy tính thể tích của khối tám mặt đều đó.
Đề thi thử THPT Quốc gia 2018 môn Toán - Mẫn Ngọc Quang lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán lần 1 do thầy Mẫn Ngọc Quang biên soạn gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề thi : + Một người thả 1 lá bèo vào một cái ao, sau 12 giờ thì bèo sinh sôi phủ kín mặt ao. Hỏi sau mấy giờ thì bèo phủ kín 1/5 mặt ao, biết rằng sau mỗi giờ thì lượng bèo tăng gấp 10 lần lượng bèo trước đó và tốc độ tăng không đổi? [ads] + Một đội ngũ giáo viên gồm 8 thầy giáo dạy toán, 5 cô giáo dạy vật lý và 3 cô giáo dạy hóa học. Sở giáo dục cần chọn ra 4 người để chấm bài thi THPT quốc gia, tính xác suất trong 4 người được chọn phải có cô giáo và có đủ ba bộ môn. + Trong không gian cho hình chữ nhật ABCD có AB = 1, AD =2. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN ta được một hình trụ. Tính diện tích toàn phần của hình trụ đó?