Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh - Hà Nội

Thi thử THPT Quốc gia là kỳ thi không thể thiếu đối với học sinh khối 12, nhằm tạo ra cho các em một kỳ thi tương tự như kỳ thi chính thức THPT Quốc gia, để các em được làm quen và thử sức. Vừa qua, trường THPT Lương Thế Vinh, thành phố Hà Nội đã tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thứ nhất. Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh – Hà Nội gồm có bốn mã đề: 111, 132, 167, 189; đề có hình thức tương tự với các đề thi THPT Quốc gia môn Toán trước đây, nội dung thi giới hạn ở những kiến thức mà học sinh đã được học, bao gồm cả chương trình Toán lớp 10 và lớp 11; đề thi có đáp án và lời giải chi tiết đầy đủ các mã đề. [ads] Trích dẫn đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Lương Thế Vinh – Hà Nội : + Bạn An có một cốc giấy hình nón với đường kính đáy là 10cm và độ dài đường sinh là 8cm. Bạn dự định đựng một viên kẹo hình cầu sao cho toàn bộ viên kẹo nằm trong cốc (không phần nào của viên kẹo cao hơn miệng cốc). Hỏi bạn An có thể đựng được viên kẹo có đường kính lớn nhất bằng bao nhiêu? + Cho hình hộp ABCD.A0B0C0D0 có đáy ABCD là hình bình hành tâm O và AD = 2AB = 2a; cos(AOB) = 3/5. Gọi E, F lần lượt là trung điểm của BC và AD. Biết rằng CD0 ⊥ CF; BB0 ⊥ ED và khoảng cách giữa hai đường thẳng CD và AA0 là a√3, tính thể tích khối hộp ABCD.A0B0C0D0. + Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (3; −2; −2) và mặt phẳng (P): x − y − z + 1 = 0. Mặt phẳng (Q): ax + by + cz + d = 0 đi qua A, vuông góc với mặt phẳng (P) và (Q) cắt hai tia Oy, Oz lần lượt tại hai điểm phân biệt M, N sao cho OM = ON (O là gốc tọa độ). Tìm d/a. + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đồ thị của hai hàm số y = 2^x và y = 1/2^x đối xứng nhau qua trục hoành. B. Đồ thị của hai hàm số y = 2^x và y = log2 x x đối xứng nhau qua đường thẳng y = −x. C. Đồ thị của hai hàm số y = log2 x và y = log2 1/x đối xứng nhau qua trục tung. D. Đồ thị của hai hàm số y = 2^x và y = log2 x đối xứng nhau qua đường thẳng y = x. + Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M (1; 2; −4) và M0 (5; 4; 2). Biết rằng M0 là hình chiếu vuông góc của M lên mặt phẳng (α), khi đó mặt phẳng (α) có một véc tơ pháp tuyến là?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 12 năm 2018 - 2019 lần 3 trường Ninh Bình - Bạc Liêu - Ninh Bình
Nhằm giúp học sinh khối 12 của nhà trường tiếp tục được rèn luyện hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019, vừa qua, trường THPT Ninh Bình – Bạc Liêu – Ninh Bình đã tổ chức kỳ thi kiểm tra chất lượng lớp 12 môn Toán năm học 2018 – 2019 lần thứ 3. Đề kiểm tra Toán 12 năm 2018 – 2019 lần 3 trường Ninh Bình – Bạc Liêu – Ninh Bình được biên soạn dựa trên cấu trúc mẫu đề tham khảo THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, đề có mã 131 gồm 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài, đề thi có đáp án. [ads] Trích dẫn đề kiểm tra Toán 12 năm 2018 – 2019 lần 3 trường Ninh Bình – Bạc Liêu – Ninh Bình : + Hai hình trụ giống hệt nhau được cắt theo các đường nét chấm là một đường sinh và dán lại để tạo thành hình trụ lớn hơn (xem hình vẽ). Gọi V1, V2 lần lượt là thể tích một khối trụ nhỏ ban đầu và thể tích khối trụ lớn. Mệnh đề nào sau đây là đúng? + Một chiếc thùng chứa đầy nước có hình một khối lập phương. Đặt vào trong thùng đó một khối nón sao cho đỉnh khối nón trùng với tâm một mặt của khối lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích của lượng nước trào ra ngoài và lượng nước còn lại ở trong thùng. + Cho hàm số y = x^3 − 2018x có đồ thị là (C). M1 là điểm trên (C) có hoành độ x1 = 2. Tiếp tuyến của (C) tại M1 cắt (C) tại điểm M2 khác M1, tiếp tuyến của (C) tại M2 cắt (C) tại điểm M3 khác M2 . . .  tiếp tuyến của (C) tại Mn−1 cắt (C) tại Mn khác Mn−1 (n = 4; 5; . . .), gọi (xn; yn) là tọa độ điểm Mn. Tìm n để 2018xn + yn − 2^2019 = 0.
Đề kiểm tra khảo sát Toán 12 THPT năm 2019 sở GDĐT Hà Nội
Chiều thứ Tư ngày 27 tháng 03 năm 2019, sở Giáo dục và Đào tạo Hà Nội tổ chức kỳ thi kiểm tra khảo sát lớp 12 THPT môn Toán năm 2019. Kỳ thi nhằm đánh giá chất lượng học tập môn Toán của các em học sinh khối 12 đang học tập tại các trường THPT trên địa bàn thủ đô Hà Nội trong quá trình các em chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán. Đây cũng là cơ hội cho các em được thử sức để phát hiện những điểm còn yếu về mặt kiến thức môn Toán THPT của bản thân và rèn luyện để có một sự chuẩn bị tốt nhất cho kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức vào ngày 25 tháng 06 năm 2019 tới đây. Đề kiểm tra khảo sát Toán 12 THPT năm 2019 sở GD&ĐT Hà Nội được biên soạn dựa theo cấu trúc chuẩn đề tham khảo THPT Quốc gia môn Toán năm 2019 của Bộ GD&ĐT, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh có 90 phút để hoàn thành bài thi, nội dung đề tập trung chủ yếu vào chương trình Toán 12, đáp án và lời giải chi tiết của đề thi sẽ được cập nhật trong thời gian sớm nhất có thể. [ads] Trích dẫn đề kiểm tra khảo sát Toán 12 THPT năm 2019 sở GD&ĐT Hà Nội : + Cường độ của ánh sáng đi qua môi trường nước biển giảm dần theo công thức I = I0.e^ux, với I0 là cường độ ánh sáng lúc ánh sáng bắt đầu đi vào môi trường nước biển và x là độ dày của môi trường đó (x tính theo đơn vị mét). Biết rằng môi trường nước biển có hằng số hấp thu u = 1,4. Hỏi ở độ sâu 30 mét thì cường độ ánh sáng giảm đi bao nhiêu lần so với cường độ ánh sáng lúc ánh sáng bắt đầu đi vào nước biển? + Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại C, CH vuông góc AB tại H, I là trung điểm của đoạn HC. Biết SI vuông góc gới mặt phẳng đáy, góc ASB = 90°. Gọi là trung  điểm của đoạn AB, O’ là tâm mặt cầu ngoại tiếp tứ diện SABI. Góc tạo bởi đường thẳng OO’ và mặt phẳng (ABC) bằng? + Trong không gian, cho hai điểm A, B cố định và độ dài đoạn thẳng AB bằng 4. Biết rằng tập hợp các điểm M sao cho MA = 3MB là một mặt cầu. Bán kính của mặt cầu bằng?
Đề kiểm định Toán 12 lần 2 năm 2018 - 2019 trường THPT Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 20 tháng 03 năm 2019, thầy và trò trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm chất lượng lần thứ hai môn Toán 12 năm học 2018 – 2019, kỳ thi nhằm đánh giá tổng quát chất lượng môn Toán của học sinh khối 12 trước khi các em bước vào kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019. Đề kiểm định Toán 12 lần 2 năm 2018 – 2019 trường THPT Yên Phong 2 – Bắc Ninh có mã đề 121 gồm 05 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài thi Toán trong 90 phút, nội dung đề tập trung chủ yếu vào chương trình Toán 12, ngoài ra có một số ít các bài toán về xác suất, dãy số … trong chương trình Toán 11, đề thi có đáp án. [ads] Trích dẫn đề kiểm định Toán 12 lần 2 năm 2018 – 2019 trường THPT Yên Phong 2 – Bắc Ninh : + Khẳng định nào sau đây đúng? A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. C. Hai mặt phẳng song song khi và chỉ khi góc giữa chúng bằng 0 độ. D. Hai đường thẳng trong không gian cắt nhau khi và chỉ khi góc giữa chúng lớn hơn 0 độ và nhỏ hơn 90 độ. + Trong không gian, cho hình chữ nhật ABCD có AB = 1 và AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần Stp của hình trụ đó. + Gọi S là tập tất cả các giá trị của x ∈ [0;100] để ba số sinx, (cosx)^2, sin3x theo thứ tự đó lập thành cấp số cộng. Tính tổng tất cả các phần tử của tập S.
Đề kiểm tra kiến thức Toán 12 lần 2 năm 2018 - 2019 trường chuyên KHTN - Hà Nội
giới thiệu đến các em học sinh khối 12 đề kiểm tra kiến thức Toán 12 lần 2 năm 2018 – 2019 trường chuyên KHTN – Hà Nội, kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 03 năm 2019, đề có mã đề 345 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh có 90 phút để làm bài thi Toán, đề thi có đáp án mã đề 123, 345, 567, 789. Trích dẫn đề kiểm tra kiến thức Toán 12 lần 2 năm 2018 – 2019 trường chuyên KHTN – Hà Nội : + Một mô hình gồm các khối cầu được xếp chồng lên nhau tạo thành một cột thẳng đứng. Biết rằng mỗi khối cầu có bán kính gấp đôi bán kính của khối cầu nằm ngay trên nó và bán kính khối cầu dưới cùng là 50cm. Hỏi mệnh đề nào sau đây là đúng? A. Chiều cao mô hình không quá 1,5m. B. Chiều cao mô hình tối đa là 2m. C. Chiều cao mô hình dưới 2m. D. Mô hình có thể đạt được chiều cao tùy ý. + Gọi (C) là đồ thị hàm số y = x^2 + 2x + 2 và điểm M di chuyển trên (C). Gọi d1, d2 là các đường thẳng đi qua M sao cho d1 song song với trục tung và d1, d2 đối xứng nhau qua tiếp tuyến của (C) tại M. Biết rằng khi M di chuyển trên (C) thì d2 luôn đi qua một điểm I(a;b) cố định. Đẳng thức nào sau đây là đúng? + Cho hàm số y = -x^3 + 3x^2 + 9x có đồ thị (C). Gọi A, B, C, D là bốn điểm trên đồ thị (C) với hoành độ lần lượt là a, b, c, d sao cho tứ giác ABCD là một hình thoi đồng thời hai tiếp tuyến tại A, C song song với nhau và đường thẳng AC tạo với hai trục tọa độ một tam giác cân. Tính tích abcd.