Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 10 năm 2023 - 2024 cụm Hà Đông Hoài Đức - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic dành cho học sinh môn Toán 10 năm học 2023 – 2024 cụm trường THPT Hà Đông & Hoài Đức, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 cụm Hà Đông & Hoài Đức – Hà Nội : + Nhà máy dự định dùng hai loại nguyên liệu để sản xuất ít nhất 140 kg chất A và 18 kg chất B. Với mỗi tấn nguyên liệu loại I, nhà máy chiết xuất được 20 kg chất A và 1,2 kg chất B. Với mỗi tấn nguyên liệu loại II, nhà máy chiết xuất được 10 kg chất A và 3 kg chất B. Giá mỗi tấn nguyên liệu loại I là 8 triệu đồng và loại II là 6 triệu đồng. Hỏi nhà máy phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất mà vẫn đạt mục tiêu đề ra. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp tối đa 9 tấn nguyên liệu loại I và 8 tấn nguyên liệu loại II. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A có phương trình đường thẳng chứa cạnh AB là x y 2 2 0 phương trình đường thẳng chứa cạnh AC là 2 1 0 x y biết điểm M 12 thuộc đoạn thẳng BC. Tìm tọa độ điểm D sao cho DB DC có giá trị nhỏ nhất. + Xét các số thực x y z thỏa mãn đồng thời 0 1 x y z và 3 2 4 x y z tìm giá trị lớn nhất của biểu thức 2 S x y z 3 2.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 - 2015 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán 10 năm học 2014 – 2015 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC. Gọi H K, lần lượt là chân đường cao hạ từ các đỉnh B C, của tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết 1 3 5 1 5 5 H K phương trình đường thẳng BC là x 3 40 y và điểm B có hoành độ âm. + a) Cho tam giác ABC có trọng tâm G. Chứng minh rằng nếu AC là tiếp tuyến của đường tròn ngoại tiếp tam giác GAB thì 22 2 cos cos 2cos A C B. b) Cho các số thực dương a bc thỏa mãn abbcca 8. Tìm giá trị nhỏ nhất của biểu thức 3 1111 P abc a bb cc a 222. + Kí hiệu E là tập hợp gồm tất cả các tam thức bậc hai f x ax bx c có a 0 2 b ac 4 0. Tìm điều kiện cần và đủ đối với các số mn p để với mọi f x thuộc E ta đều có g x f x m ax b n bx c p cx a cũng thuộc E.
Đề thi học sinh giỏi Toán 10 năm 2012 - 2013 trường THPT Thuận An - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi Toán 10 năm học 2012 – 2013 trường THPT Thuận An, tỉnh Thừa Thiên Huế; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 10 năm 2012 – 2013 trường THPT Thuận An – TT Huế : + Cho phương trình 2 mx m x m 2 1 2 0 m là tham số 1. Tìm m để phương trình đã cho có một nghiệm. 2. Tìm m để phương trình đã cho có hai nghiệm thỏa mãn nghiệm này gấp hai lần nghiệm kia. + Cho tam giác ABC. Trên các cạnh AB, BC, CA lấy lần lượt các điểm M, N, P thỏa mãn AM AB BC 2 BN BC AC 3 CP CA 2. Chứng minh rằng hai tam giác ABC và MNP có cùng trọng tâm. + Gọi a, b, c là độ dài ba cạnh của tam giác abc hhh là độ dài ba đường cao tương ứng ba cạnh đó; r là bán kính đường tròn nội tiếp tam giác đó.
Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Trần Phú Vĩnh Phúc Bản PDF Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc. Đề thi có mã đề 101, hình thức là trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài là 90 phút, không kể thời gian giao đề. Đề thi đã được trang bị đáp án. Đề thi bắt đầu bằng một bài toán liên quan đến một công ti sản xuất và bán máy tính, trong đó yêu cầu học sinh tìm ra số năm mà công ti bán được số lượng máy tính vượt mức 179 nghìn chiếc. Bài toán thứ hai liên quan đến việc tính toán học phí của một khóa học dựa trên số lượng học viên đăng kí. Cuối cùng, bài toán thứ ba đưa ra một tình huống về một lớp học gồm các học sinh giỏi Toán, Văn, và Anh, yêu cầu học sinh tính số học sinh giỏi ít nhất hai môn. Đề thi không chỉ giúp học sinh kiểm tra kiến thức mà còn khuyến khích họ tư duy sáng tạo và giải quyết vấn đề theo cách logic. Hy vọng rằng đề thi sẽ là cơ hội tốt để các em thể hiện khả năng và kiến thức của mình trong môn Toán. Chúc các em có kết quả tốt trong kỳ thi sắp tới!
Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Thượng Hiền TP HCM
Nội dung Đề thi HSG lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Thượng Hiền TP HCM Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán năm 2022-2023 trường THPT Nguyễn Thượng Hiền TP HCM Đề thi HSG lớp 10 môn Toán năm 2022-2023 trường THPT Nguyễn Thượng Hiền TP HCM Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 bài thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022-2023 của trường THPT Nguyễn Thượng Hiền, thành phố Hồ Chí Minh (lần thứ 26). Bài thi bao gồm hai phần: phần chung dành cho tất cả các thí sinh và phần riêng dành cho học sinh lớp 10 chuyên Toán và không chuyên Toán. Trích dẫn một số câu hỏi từ đề thi HSG Toán lớp 10 năm 2022-2023 trường THPT Nguyễn Thượng Hiền - TP HCM: 1. Trong lớp 10A có 14 học sinh giỏi Toán, 10 học sinh giỏi Hóa, 8 học sinh giỏi Lý. Có bao nhiêu học sinh giỏi cả ba môn? Phân chia tất cả học sinh thành các tổ có số lượng thành viên bằng nhau. Việc này có thể thực hiện được không? Vì sao? 2. Xét tam giác NTH đều cạnh a. Gọi (X) là tập hợp tất cả điểm M thỏa mãn điều kiện MN.MH - MN.MT = 2MN^2. Hãy tính diện tích của tập hợp (X). 3. Cho tứ giác ABCD nội tiếp có các cặp cạnh đối không song song. Chứng minh rằng hai đường thẳng EK và FK vuông góc, với E là giao điểm của AB và CD, F là giao điểm của AC và BD, K là điểm giao của đường tròn ngoại tiếp các tam giác AFD và BFC.