Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giới hạn, hàm số liên tục Toán 11 GDPT 2018

Tài liệu gồm 171 trang, bao gồm kiến thức trọng tâm, các dạng toán thường gặp và bài tập chuyên đề giới hạn, hàm số liên tục môn Toán 11 chương trình GDPT 2018. Bài 1 . Giới hạn của dãy số 332. A Giới hạn hữu hạn của dãy số 332. 1. Định nghĩa 332. 2. Một số giới hạn cơ bản 332. B Định lí về giới hạn hữu hạn 332. C Tổng của cấp số nhân lùi vô hạn 333. D Giới hạn vô cực 333. E Các dạng toán thường gặp 333. + Dạng 1. Tính giới hạn dãy số bằng cách dùng định nghĩa, định lí về giới hạn dãy số 333. 1. Ví dụ mẫu 333. 2. Bài tập tự luyện 335. 3. Bài tập trắc nghiệm 336. + Dạng 2. Tính giới hạn L = lim P(n)/Q(n) 338. 1. Ví dụ mẫu 338. 2. Bài tập tự luyện 340. 3. Câu hỏi trắc nghiệm 352. + Dạng 3. Phương pháp lượng liên hợp (lim hữu hạn) 355. 1. Ví dụ mẫu 355. 2. Bài tập rèn luyện 356. 3. Bài tập trắc nghiệm 357. + Dạng 4. Giới hạn vô cực 361. 1. Ví dụ mẫu 361. 2. Bài tập tự luyện 362. 3. Bài tập trắc nghiệm 363. + Dạng 5. Tính tổng của dãy cấp số nhân lùi vô hạn 365. 1. Ví dụ mẫu 365. 2. Bài tập tự luyện 367. 3. Câu hỏi trắc nghiệm 368. + Dạng 6. Toán thực tế, liên môn liên quan đến giới hạn dãy số 371. 1. Ví dụ mẫu 371. 2. Bài tập tự luyện 372. 3. Bài tập trắc nghiệm 379. Bài 2 . Giới hạn của hàm số 385. A Giới hạn hữu hạn của hàm số tại một điểm 385. 1. Định nghĩa 385. 2. Phép toán trên giới hạn hữu hạn của hàm số 385. 3. Giới hạn một phía 385. B Giới hạn hữu hạn của hàm số tại vô cực 386. C Giới hạn vô cực (một phía) của hàm số tại một điểm 386. D Giới hạn vô cực của hàm số tại vô cực 387. E Các dạng toán thường gặp 387. + Dạng 1. Tính giới hạn bằng định nghĩa 387. 1. Ví dụ mẫu 387. 2. Bài tập tự luận 388. + Dạng 2. Các phép toán về giới hạn hàm số 389. 1. Ví dụ mẫu 390. 2. Bài tập tự luận 392. 3. Câu hỏi trắc nghiệm 403. + Dạng 3. Phương pháp đặt thừa số chung – kết quả vô cực 413. 1. Ví dụ mẫu 413. 2. Bài tập rèn luyện 414. 3. Câu hỏi trắc nghiệm 415. + Dạng 4. Giới hạn một phía 417. 1. Ví dụ mẫu 418. 2. Bài tập tự luận 419. 3. Câu hỏi trắc nghiệm 421. + Dạng 5. Bài toán thực tế về giới hạn hàm số 424. 1. Ví dụ mẫu 424. 2. Bài tập tự luận 424. Bài 3 . Hàm số liên tục 433. A Khái niệm 433. 1. Hàm số liên tục tại một điểm 433. 2. Hàm số liên tục trên một khoảng hoặc một đoạn 433. B Một số định lí cơ bản 433. 1. Tính liên tục của một số hàm số sơ cấp cơ bản 433. 2. Tính liên tục của tổng, hiệu, tích, thương của hai hàm số liên tục 433. C Các dạng toán thường gặp 434. + Dạng 1. Câu hỏi lý thuyết 434. 1. Ví dụ mẫu 434. 2. Bài tập trắc nghiệm 434. + Dạng 2. Dựa vào đồ thị xét tính liên tục của hàm số tại một điểm, một khoảng 437. 1. Ví dụ mẫu 437. 2. Bài tập tự luận 439. 3. Bài tập trắc nghiệm 440. + Dạng 3. Xét tính liên tục của hàm số tại một điểm 444. 1. Ví dụ mẫu 444. 2. Bài tập tự luyện 445. 3. Bài tập trắc nghiệm 447. + Dạng 4. Hàm số liên tục trên khoảng, đoạn 452. 1. Ví dụ mẫu 452. 2. Bài tập tự luyện 454. 3. Bài tập trắc nghiệm 465. + Dạng 5. Bài toán có chứa tham số 467. 1. Ví dụ mẫu 467. 2. Bài tập rèn luyện 468. 3. Bài tập trắc nghiệm 470. + Dạng 6. Toán thực tế, liên môn về hàm số liên tục 472. 1. Ví dụ 472. + Dạng 7. Bài toán phương trình có nghiệm 473. 1. Ví dụ mẫu 473. 2. Bài tập rèn luyện 474. 3. Bài tập trắc nghiệm 475. Bài 4 . Bài tập cuối chương III 478. A Bài tập tự luận 478. B Bài tập trắc nghiệm 482. C Đề ôn tập 494. 1. Phần Trắc nghiệm (7 điểm) 494. 2. Phần Tự luận (3 điểm) 500.

Nguồn: toanmath.com

Đọc Sách

Kĩ thuật tính giới hạn của dãy số và hàm số
Tài liệu gồm 36 trang được cắt ra từ sách. Tài liệu trình bày ngắn gọn phần lý thuyết, các ví dụ mẫu có lời giải chi tiết, đa dạng bài và phần bài tập tự rèn luyện của chuyên đề giới hạn, bao gồm giới hạn dãy số, giới hạn hàm số và các vấn đề liên quan. [ads]
Lý thuyết và một số bài tập giới hạn - Trần Sĩ Tùng
Tài liệu gồm 11 trang với nội dung gồm lý thuyết và một số bài tập giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục. I. Giới hạn của dãy số 1. Giới hạn đặc biệt 2. Định lí 3. Tổng của cấp số nhân lùi vô hạn 4. Một số phương pháp tìm giới hạn của dãy số II. Giới hạn của hàm số 1. Giới hạn đặc biệt 2. Định lí [ads] 3. Giới hạn một bên 4. Một số phương pháp khử dạng vô định III. Hàm số liên tục 1. Hàm số liên tục tại một điểm 2. Hàm số liên tục trên một khoảng 3. Hàm số liên tục trên một đoạn [a; b] BÀI TẬP ÔN CHƯƠNG
Các bài toán về giới hạn trong đề thi Olympic Toán 11
LỜI GIỚI THIỆU Kính chào Quý Thầy Cô cùng các bạn học sinh thân mến! Trong quá trình ôn tập để chuẩn bị cho những kì thi học sinh giỏi, em cùng với Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đã vô cùng thích thú với Chuyên đề “Giới hạn”. Nhằm để củng cố kiến thức, qua sưu tầm, tìm tòi và học hỏi, chúng em đã tổng hợp được một số dạng toán trong các đề thi Olympic tháng 4, Kì thi tuyển chọn học sinh giỏi … và phát triển thêm một số bài tập hay và khó. Chúng em hy vọng tài liệu nhỏ này có thể giúp Quý Thầy Cô và các bạn học sinh tham khảo, mở rộng thêm nhiều dạng bài tập mới, cũng như sẽ giúp ích cho các bạn học sinh, các anh chị ôn tập để chuẩn bị cho những kì thi sắp tới! Khi tổng hợp và biên soạn, chúng em xin chân thành cảm ơn đến Thầy Nguyễn Minh Thành đã góp ý về mặt ý tưởng cũng như hỗ trợ về mặt công nghệ thông tin để giúp chúng em hoàn thiện tài liệu này. Ngoài ra, xin gửi lời cảm ơn đến những bạn sau: 1 Bạn Tăng Phồn Thịnh, Lớp 11A1, Niên khóa 2019 – 2022. 2 Bạn Huỳnh Trần Nhật Quang, Lớp 11T1, Niên khóa 2019 – 2022. 3 Bạn Nguyễn Phạm Nhật Minh, Lớp 11T2, Niên khóa 2019 – 2022. 4 Bạn Lý Nguyễn, Lớp 11T2, Niên khóa 2019 – 2022. 5 Bạn Nguyễn Đức Lộc, Lớp 11T1, Niên khóa 2019 – 2022. 6 Bạn Nguyễn Minh Khoa, Lớp 11A2, Niên khóa 2019 – 2022. Cùng các bạn là thành viên của Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đã cùng tham gia, đóng góp để tài liệu thêm hoàn thiện và chỉnh chu hơn. Đây là dự án ebook đầu tiên của chúng em, dù đã cố gắng nhưng vẫn không thể tránh những sai sót, chúng em rất mong nhận được những phản hồi, góp ý từ Quý Thầy Cô và các bạn học sinh. Kính chúc Quý Thầy Cô và các bạn học một năm mới thành công và hạnh phúc. Đặc biệt, chúc các bạn trong Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đạt kết quả thật cao trong những kỳ thi sắp tới. Em xin trân trọng kính chào! Mỹ Tho, ngày 18 tháng 02 năm 2021. Nguyễn Thị Anh Thư, Lớp 11T3, Niên khóa 2019 – 2022.
Trắc nghiệm giới hạn có giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 80 trang tổng hợp các câu hỏi và bài toán trắc nghiệm giới hạn có lời giải chi tiết trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm giới hạn có giải chi tiết trong các đề thi thử Toán 2018 : + (THPT Thạch Thành 2 – Thanh Hóa – lần 1 năm 2017 – 2018) Phát biểu nào trong các phát biểu sau là đúng? A. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm -x0. B. Nếu hàm số y = f(x) có đạo hàm trái tại x0 thì nó liên tục tại điểm đó. C. Nếu hàm số y = f(x) có đạo hàm phải tại x0 thì nó liên tục tại điểm đó. D. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó. [ads] + (SGD Ninh Bình năm 2017 – 2018) Trong các giới hạn hữu hạn sau, giới hạn nào có giá trị khác với các giới hạn còn lại? + (THPT Quãng Xương 1 – Thanh Hóa năm 2017 – 2018) Cho hàm số f(x) xác định trên khoảng K chứa a. Hàm số f(x) liên tục tại x = a nếu?