Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giới hạn, hàm số liên tục Toán 11 GDPT 2018

Tài liệu gồm 171 trang, bao gồm kiến thức trọng tâm, các dạng toán thường gặp và bài tập chuyên đề giới hạn, hàm số liên tục môn Toán 11 chương trình GDPT 2018. Bài 1 . Giới hạn của dãy số 332. A Giới hạn hữu hạn của dãy số 332. 1. Định nghĩa 332. 2. Một số giới hạn cơ bản 332. B Định lí về giới hạn hữu hạn 332. C Tổng của cấp số nhân lùi vô hạn 333. D Giới hạn vô cực 333. E Các dạng toán thường gặp 333. + Dạng 1. Tính giới hạn dãy số bằng cách dùng định nghĩa, định lí về giới hạn dãy số 333. 1. Ví dụ mẫu 333. 2. Bài tập tự luyện 335. 3. Bài tập trắc nghiệm 336. + Dạng 2. Tính giới hạn L = lim P(n)/Q(n) 338. 1. Ví dụ mẫu 338. 2. Bài tập tự luyện 340. 3. Câu hỏi trắc nghiệm 352. + Dạng 3. Phương pháp lượng liên hợp (lim hữu hạn) 355. 1. Ví dụ mẫu 355. 2. Bài tập rèn luyện 356. 3. Bài tập trắc nghiệm 357. + Dạng 4. Giới hạn vô cực 361. 1. Ví dụ mẫu 361. 2. Bài tập tự luyện 362. 3. Bài tập trắc nghiệm 363. + Dạng 5. Tính tổng của dãy cấp số nhân lùi vô hạn 365. 1. Ví dụ mẫu 365. 2. Bài tập tự luyện 367. 3. Câu hỏi trắc nghiệm 368. + Dạng 6. Toán thực tế, liên môn liên quan đến giới hạn dãy số 371. 1. Ví dụ mẫu 371. 2. Bài tập tự luyện 372. 3. Bài tập trắc nghiệm 379. Bài 2 . Giới hạn của hàm số 385. A Giới hạn hữu hạn của hàm số tại một điểm 385. 1. Định nghĩa 385. 2. Phép toán trên giới hạn hữu hạn của hàm số 385. 3. Giới hạn một phía 385. B Giới hạn hữu hạn của hàm số tại vô cực 386. C Giới hạn vô cực (một phía) của hàm số tại một điểm 386. D Giới hạn vô cực của hàm số tại vô cực 387. E Các dạng toán thường gặp 387. + Dạng 1. Tính giới hạn bằng định nghĩa 387. 1. Ví dụ mẫu 387. 2. Bài tập tự luận 388. + Dạng 2. Các phép toán về giới hạn hàm số 389. 1. Ví dụ mẫu 390. 2. Bài tập tự luận 392. 3. Câu hỏi trắc nghiệm 403. + Dạng 3. Phương pháp đặt thừa số chung – kết quả vô cực 413. 1. Ví dụ mẫu 413. 2. Bài tập rèn luyện 414. 3. Câu hỏi trắc nghiệm 415. + Dạng 4. Giới hạn một phía 417. 1. Ví dụ mẫu 418. 2. Bài tập tự luận 419. 3. Câu hỏi trắc nghiệm 421. + Dạng 5. Bài toán thực tế về giới hạn hàm số 424. 1. Ví dụ mẫu 424. 2. Bài tập tự luận 424. Bài 3 . Hàm số liên tục 433. A Khái niệm 433. 1. Hàm số liên tục tại một điểm 433. 2. Hàm số liên tục trên một khoảng hoặc một đoạn 433. B Một số định lí cơ bản 433. 1. Tính liên tục của một số hàm số sơ cấp cơ bản 433. 2. Tính liên tục của tổng, hiệu, tích, thương của hai hàm số liên tục 433. C Các dạng toán thường gặp 434. + Dạng 1. Câu hỏi lý thuyết 434. 1. Ví dụ mẫu 434. 2. Bài tập trắc nghiệm 434. + Dạng 2. Dựa vào đồ thị xét tính liên tục của hàm số tại một điểm, một khoảng 437. 1. Ví dụ mẫu 437. 2. Bài tập tự luận 439. 3. Bài tập trắc nghiệm 440. + Dạng 3. Xét tính liên tục của hàm số tại một điểm 444. 1. Ví dụ mẫu 444. 2. Bài tập tự luyện 445. 3. Bài tập trắc nghiệm 447. + Dạng 4. Hàm số liên tục trên khoảng, đoạn 452. 1. Ví dụ mẫu 452. 2. Bài tập tự luyện 454. 3. Bài tập trắc nghiệm 465. + Dạng 5. Bài toán có chứa tham số 467. 1. Ví dụ mẫu 467. 2. Bài tập rèn luyện 468. 3. Bài tập trắc nghiệm 470. + Dạng 6. Toán thực tế, liên môn về hàm số liên tục 472. 1. Ví dụ 472. + Dạng 7. Bài toán phương trình có nghiệm 473. 1. Ví dụ mẫu 473. 2. Bài tập rèn luyện 474. 3. Bài tập trắc nghiệm 475. Bài 4 . Bài tập cuối chương III 478. A Bài tập tự luận 478. B Bài tập trắc nghiệm 482. C Đề ôn tập 494. 1. Phần Trắc nghiệm (7 điểm) 494. 2. Phần Tự luận (3 điểm) 500.

Nguồn: toanmath.com

Đọc Sách

Tìm giới hạn bằng máy tính cầm tay - Nguyễn Văn Phép
Tài liệu gồm 15 hướng dẫn tìm nhanh giới hạn của dãy số và hàm số bằng máy tính cầm tay Casio, tài liệu được biên soạn bởi thầy Nguyễn Văn Phép. Kiến thức giới hạn dãy số và giới hạn hàm số là cơ sở của của hai phép tính đạo hàm và tích phân ở phổ thông trung học. Kiến thức vế giới hạn không những khó đối với người học mà còn khó đối với người dạy. Trong tình hình hiện nay để cập nhật phù hợp thi trắc nghiệm và giúp giăm bớt khó khăn nên tác giả biên soạn đề tài này. Giải pháp thực hiện bằng máy tính cầm tay (MTCT) để tính giới hạn dãy số và hàm số: + Dãy có giới hạn là 0 + Giới hạn hữu hạn + Dãy số có giới hạn vô cực + Giới hạn hàm số tại một điểm: + Các dạng vô định về giới hạn của hàm số [ads]
Chuyên đề Giới hạn - Lư Sĩ Pháp
Tài liệu gồm 75  trang bao gồm phần lý thuyết cần nắm ở mỗi bài học, bài tập có hướng dẫn giải, bài tập tự luyện và bài tập trắc nghiệm chuyên đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục. §1. GIỚI HẠN CỦA DÃY SỐ 1. Giới hạn hữu hạn của dãy số 2. Giới hạn vô cực của dãy số 3. Các giới hạn đặc biệt của dãy số 4. Định lí về giới hạn hữu hạn của dãy số 5. Một vài quy tắc tìm giới hạn vô cực của dãy số 6. Tổng cấp số nhân lùi vô hạn của dãy số 7. Định lí kẹp về giới hạn của dãy số 8. Phương pháp tìm giới hạn của dãy số 9. Phương pháp tính tổng của cấp số nhân lùi vô hạn [ads] §2. GIỚI HẠN CỦA HÀM SỐ 1. Giới hạn hữu hạn của hàm số 2. Giới hạn vô cực của hàm số 3. Định lí vể giới hạn hữu hạn của hàm số 4. Các giới hạn đặc biệt của hàm số 5. Quy tắc về giới hạn vô cực của hàm số 6. Khử các dạng vô định về giới hạn vô cực của hàm số §3. HÀM SỐ LIÊN TỤC BÀI TẬP TRẮC NGHIỆM GIỚI HẠN CỦA DÃY SỐ VÀ HÀM SỐ, HÀM SỐ LIÊN TỤC 
Chuyên đề giới hạn của dãy số - Huỳnh Ái Hằng
Tài liệu gồm 19 trang hướng dẫn giải các bài toán giới hạn của dãy số thông qua các ví dụ minh họa có lời giải chi tiết và các bài tập trắc nghiệm ôn luyện có đáp án. I – Lý thuyết 1. Định lí 1 2. Các phép toán + Định lý 1: Nguyên lý Weierstrass + Định lý 2: Định lý kẹp giữa +Các kết quả quan trọng [ads] 3. Một và quy tắc tìm giới hạn dãy số II – Bài tập trắc nghiệm minh họa Gồm 28 bài có giải chi tiết III – Bài tập trắc nghiệm tự luyện Gồm 71 bài có đáp án
Phân dạng và các phương pháp giải toán chuyên đề giới hạn - Trần Đình Cư
Tài liệu gồm 55 trang phân dạng và hướng dẫn giải các dạng toán chuyên đề giới hạn, các bài tập trong tài liệu được giải chi tiết. Nội dung tài liệu: BÀI 1. GIỚI HẠN CỦA DÃY SỐ. Dạng 1. Sử dụng định nghĩa tìm giới hạn 0 của dãy số Dạng 2. Sử dụng định lí để tìm giới hạn 0 của dãy số Dạng 3. Sử dụng các giới hạn đặc biệt và các định lý để giải các bài toán tìm giới hạn dãy Dạng 4. Sử dụng công thức tính tổng của một cấp số nhân lùi vô hạn, tìm giới hạn, biểu thị một số thập phân vô hạn tuần hoàn thành phân số Dạng 5. Tìm giới hạn vô cùng của một dãy bằng định nghĩa Dạng 6. Tìm giới hạn của một dãy bằng cách sử dụng định lý, quy tắc tìm giới hạn vô cực MỘT SỐ DẠNG TOÁN NÂNG CAO {Tham khảo} BÀI 2. GIỚI HẠN HÀM SỐ Dạng 1. Dùng định nghĩa để tìm giới hạn Dạng 2. Tìm giới hạn của hàm số bằng công thức Dạng 3. Sử dụng định nghĩa tìm giới hạn một bên Dạng 4. Sử dụng định lý và công thức tìm giới hạn một bên [ads] Dạng 5. Tính giới hạn vô cực Dạng 6. Tìm giới hạn của hàm số thuộc dạng vô định 0/0 Dạng 7. Dạng vô định Dạng 8. Dạng vô định MỘT SỐ DẠNG TOÁN NÂNG CAO {Tham khảo} BÀI 3. HÀM SỐ LIÊN TỤC Dạng 1. Xét tính liên tục của hàm số f(x) tại điểm x0 Dạng 2. Xét tính liên tục của hàm số tại một điểm Dạng 3. Xét tính liên tục của hàm số trên một khoảng K Dạng 4. Tìm điểm gián đoạn của hàm số f(x) Dạng 5. Chứng minh phương trình f(x)=0 có nghiệm MỘT SỐ BÀI TẬP LÝ THUYẾT {Tham khảo}