Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Kiên Giang

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra trong hai ngày 30 và 31 tháng 08 năm 2022. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Kiên Giang : + Cho dãy đa thức (Pn(x)) xác định bởi: P0(x) = x3 – 4x và Pn+1(x) = Pn(1 + x).Pn(1 – x) – 1 với mọi số tự nhiên n và mọi x thuộc R. a) Tính P2022(2). b) Chứng minh rằng, tồn tại một đa thức Q(x) với hệ số nguyên sao cho P2022(x) = x2023.Q(x) với mọi x thuộc R. + Cho số nguyên n >= 2. Xét m là một số nguyên dương sao cho tồn tại một tập hợp T thoả mãn đồng thời các tính chất sau đây: Mỗi phần tử của T là một tập con m phần tử của tập {1; 2; 3; …; mn). Mỗi cặp phần tử của T có không quá 1 phần tử chung. Mỗi phần tử của tập {1; 2; 3; …; mn} thuộc đúng hai phần tử của T. Tìm giá trị lớn nhất có thể của m. + Cho tam giác không cân ABC nội tiếp đường tròn (O). Đường tròn ngoại tiếp tam giác BOC cắt AB và AC tương ứng tại Ab và Ac; đường tròn ngoại tiếp tam giác COA cắt BA và BC tương ứng tại Ba và Bc; và đường tròn ngoại tiếp tam giác AOB cắt CA và CB tương ứng tại Ca và Cb (các điểm Ab, Ac, Ba, Bc, Ca, Cb không trùng với các đỉnh của tam giác ABC). Các cặp đường thẳng (BcBa;CaCb), (CaCb;AbAc), (AbAc;BcBa) lần lượt có các giao điểm là X, Y, Z. Chứng minh rằng: a) Các điểm O, Ba, Ca thẳng hàng. b) Đường tròn ngoại tiếp tam giác XYZ tiếp xúc với (O).

Nguồn: sytu.vn

Đọc Sách

Đề lập đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Bình Phước
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Bình Phước gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày: 03/01/2022 và 04/01/2022.
Đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GDĐT Đồng Nai
Thứ Ba ngày 28 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi Quốc gia THPT môn Toán năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GD&ĐT Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển thi HSG QG THPT 2022 môn Toán sở GD&ĐT Đồng Nai : + Để xác định ai sở hữu kho báu, Alibaba và bốn mươi tên cướp chơi trò chơi sau đây trên một bảng ô vuông vô hạn: họ luân phiên chơi, đầu tiên là Alibaba, sau đó là lần lượt mỗi tên cướp, rồi sau đó là Alibaba, rồi lại lần lượt các tên cướp; cứ tiếp tục như vậy. Mỗi lượt chơi, người chơi được phép tô màu một đoạn thẳng đơn vị là cạnh chung của hai ô vuông đơn vị nào đó của bảng miễn là đoạn đó chưa được tô. Alibaba được sở hữu kho báu nếu sau một lượt chơi của một người chơi nào đó, có một hình chữ nhật 1 x 2 (hoặc 2 x 1) mà toàn bộ biên của nó được tô nhưng đoạn thẳng đơn vị nằm bên trong thì không được tô (xem hình); nếu không thì kho báu thuộc về bốn mươi tên cướp. Hỏi Alibaba có cách nào lấy được kho báu hay không? + Tìm tất cả các hàm số f: R vào R sao cho f(xy) = yf(x) + x + f(f(y) – f(x)) với mọi x, y thuộc R. + Cho tam giác ABC nhọn nội tiếp (O) có H là trực tâm và AD, BE, CF là các đường cao; CH cắt lại đường tròn ngoại tiếp tam giác AHB ở M và BH cắt lại đường tròn ngoại tiếp tam giác AHC ở N. Lấy T đối xứng H qua EF và gọi I là tâm đường tròn ngoại tiếp tam giác THD. 1) Chứng minh LH là tiếp tuyến của đường tròn ngoại tiếp tam giác HMN. 2) DM cắt (AHB) tại điểm thứ hai là X; DN cắt đường tròn ngoại tiếp tam giác AHC tại điểm thứ hai là Y. Gọi P là tâm đường tròn ngoại tiếp tam giác AXY. Chứng minh AP vuông góc với LD.
Đề minh họa thi HSG tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề minh họa kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; đề thi mã đề T12 gồm 06 trang, đề được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút. Trích dẫn đề minh họa thi HSG tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Để đủ tiền mua nhà, anh Ba vay ngân hàng 400 triệu đồng theo phương thức lãi kép với lãi suất 0,8% / tháng. Nếu sau mỗi tháng, kể từ ngày vay, anh Ba trả nợ cho ngân hàng số tiền cố định là 10 triệu đồng bao gồm cả lãi vay và tiền gốc. Biết rằng lãi suất không thay đổi trong suốt quá trình anh Ba trả nợ. Hỏi sau bao nhiêu tháng thì anh Ba trả hết nợ ngân hàng? + Lon nước ngọt có dạng hình trụ và cốc uống nước có dạng hình nón cụt. Lon nước có chiều cao 15cm, đường kính đáy 6cm, cốc có chiều cao 15cm, đường kính đáy và đường kính miệng cốc lần lượt là 4cm và 8cm (như hình vẽ minh họa dưới đây). Khi rót nước ngọt từ lon ra cốc thì chiều cao h của phần nước ngọt còn lại trong lon và chiều cao của phần nước ngọt có trong cốc là như nhau. Hỏi khi đó chiều cao h trong lon nước gần nhất số nào sau đây? Bỏ qua bề dày của lon nước, cốc nước và giả sử lon đựng đầy nước ngọt, cốc không chứa nước trước khi rót. + Từ tập hợp tất cả các số tự nhiên có năm chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Gọi K là xác suất để số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau. Khi đó p thuộc khoảng nào sau đây?
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT An Giang
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT An Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2021.