Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm 2015 2016 sở GD ĐT Hà Tĩnh

Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm 2015 2016 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 Đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 của sở GD&ĐT Hà Tĩnh. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đề thi: + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác nhọn ABC có đường cao AH (H ∈ BC) và D, E lần lượt là trung điểm của AB, AC. Gọi F là điểm đối xứng với B qua E. Giả sử F(−3; 3) và đường trung trực của CH có phương trình x − 1 = 0. Tìm tọa độ giao điểm M của các đường thẳng HD, FA. Tìm tọa độ giao điểm N của tia CD với đường tròn ngoại tiếp tam giác ABC (N 6= C), biết đường thẳng đi qua N và tâm đường tròn ngoại tiếp tam giác HCF có phương trình x − 2y − 1 = 0. + Một vùng đất hình chữ nhật ABCD có AB = 25 km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15 km/h, vận tốc của ngựa khi đi trên phần MNCD là 30 km/h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất. + Tìm giá trị lớn nhất của số nguyên dương n sao cho tồn tại n tam thức bậc hai khác nhau từng đôi một thỏa mãn đồng thời các điều kiện sau: i) mỗi tam thức bậc hai có hệ số của x^2 bằng 1; ii) tổng của 2 tam thức bậc hai bất kỳ có đúng 1 nghiệm (hai tam thức bậc hai là khác nhau nếu có ít nhất một hệ số tương ứng khác nhau).

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.
Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.
Đề thi học sinh giỏi cấp trường Toán 10 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề thi học sinh giỏi cấp trường Toán 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi cấp trường Toán 10 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21.Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Cho tam giác ABC với O, I theo thứ tự là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Tìm giá trị nhỏ nhất của biểu thức P.